

LIGHTING TECHNOLOGY PRODUCTS

Vossloh-Schwabe

Vossloh-Schwabe is not merely a provider of top-quality system solutions for the lighting industry, but above all makes a competent and innovative contribution to setting market trends in the field of LED lighting.

Numerous VS project solutions implemented on the basis of entire LED systems are currently satisfying the high requirements placed on energyefficient lighting all over the world.

Employing approximately 1000 people in more than 20 countries, Vossloh-Schwabe is represented all over the world. As a subsidiary of the Japanese Panasonic Group, VS can draw on extensive resources for R\&D as well as for international expansion activities.

A highly motivated workforce, comprehensive market knowledge, profound industry expertise as well as eco-awareness and environmental responsibility show Vossloh-Schwabe to be a reliable partner for the provision of optimum and cost-effective LED lighting solutions.
But Vossloh-Schwabe naturally also continues to provide all components needed in the field of conventional lighting technology.

Vossloh-Schwabe's dedication to delivering superior quality is reflected in its ISO 9001 certification.

Vossloh-Schwabe is ready to embark on a collaborative journey into an economically illuminated LED future.

Some lighting applications continue to rely on conventional technologies.

Please see our separate Standard Technology Catalogue for product details.

	LED System Overview	6-7
1	LED Constant-current System	8-91
	LUGA Line	10-13
	LED Line SMD Kit	14-16
	LED Line SMD L14/28/56	17-19
	LED Line SMD Slim	20-21
	LED Line Fix LUGA 2015	22-26
	LED Line Fix SMD	27-29
	LED Line AluFix LUGA 2015	30-33
	LED Line AluFix SMD	34-35
	LED Light Panel SMD	36
	LUGA Shop 2015	37-41
	LUGA C 2015	42-46
	LED industry and hall lighting	47-63
	SYM I	49-52
	SYM II	53-56
	SYM I - Allround	57-58
	SYM II - Allround	59
	Industrial FlatEmitter SMD	60
	LUGA Industrial 2014 10,000 Im	61
	LUGA C 2015, Optics	62-63
	LED street and outdoor lighting	64-82
	M-Class	65-69
	S-Class	70-73
	Arealed	74-77
	M-Class - Allround	78-79
	S-Class - Allround	80
	AreaLED - Allround	81
	Streetlight FlatEmitter SMD 3000-11,000 Im	82
	PowerEmitter	83-84
	TriplePowerEmitter	84-85
	PowerOptics	86-88
	Reflectors for PowerEmitter XP modules	89
	Heat sinks for LED modules XP and XML	89
	Thermal tapes	90-91
2	LED Modules for Direct Connection to Mains Voltage	92-104
	LEDSpot ReadyLine IP	93
	LEDSpot Readyline MR16	94
	Readyline S	95-96
	ReadyLine DL	97
	Readyline C	98-104
3	LED Downlights	105-111
	Pro and Prime	106-109
	Decoled	110-111
4	LEDSpots	112-137
	LEDSpot overview	113
	Shopline	114-121
	LEDSpot Activeline	122-127
	LEDSpots	128-137

5	LED Constant-current Drivers	138-182
	For office lighting	141-150
	For retail lighting	151-159
	For residential lighting	160-167
	For street lighting	168-176
	For industrial lighting	177-181
	iProgrammer	182
6	Protection and Power Adjustment	183-191
	Luminaire protection device	184-185
	Inrush current limiter	186
	Power switches	187-189
	Switch units	190
	Resistor network	191
7	24 V Systems	192-212
	High Power 24-V-CA modules	194-195
	LEDLine Flex SMD Professional	196-197
	AluLED IP20 / IP64	198-199
	Colour control modules - DigitED CA	200-202
	LED connection technology	203-204
	LED converters for LED modules 24 V and 12 V	205-212
8	Emergency Lighting Devices for LED Applications	213-215
9	LED Lamps	216-223
	Low-voltage replacement	217-219
	Mains voltage replacement	220-223
10	Technical Details for LED Applications	224-229
11	Lighting Control System for Indoor Applications	230-255
	Systems overview	232-233
	Light Controller IP/DALI, LightBox	234-235
	Light Controller L / LS and LW / LSW	236-237
	Light Controller S / XS	238-239
	Extender / Extender Flex	240
	MultiSensors	241
	Industry sensors High Bay	242
	Technical details	243-255
12	Lighting Control System for Outdoor Applications	256-272
	Smart Night	260-261
	Flex Night	262-264
	Managed Night	265-270
	Accessories	271-272
	Table of Reference Numbers	273-280

LED SYSTEM

LED MODULES, OPERATING DEVICES AND CONNECTING TECHNOLOGY

Vossloh-Schwabe is not merely a provider of top-quality system solutions Systems and Components for Lighting Applications with LEDs

Thanks to the characteristics and advantages of LED modules over conventional light sources, there is almost no limit to the ways in which LED modules can be used, and new applications are being found on a continuous basis.

The usefulness of LED modules stretches from architecture and furniture design right through to creating atmospheric lighting in homes, shops, bars and restaurants. LED modules can be integrated into existing lighting systems or integrated into the respective application as a separate light source. These LED modules are dimmable if used with a suitable LED ballast and a matching control unit.

Vossloh-Schwabe develops and manufactures LED modules in different performance classes and shapes on the basis of $C O B$ and SMD technology with a comparably minimal decrease in luminous flux over a module's service life and with extremely high colour stability.

The DigilED series makes a high-performance range of colour-control modules for polychromatic control of LED modules using RGB technology available to users. The digital technology and user-friendly interfaces guarantee LED lighting is simple to use.

Vossloh-Schwabe's high-quality electronic LED control gear, which is available in various performance classes and designs, is designed to supply power to voltage- and constant-current-operated LED applications.

Vossloh-Schwabe's range of LED lighting systems and components is rounded off by connection components for integrating LED modules into lighting applications. Different joining elements to match the individual LED modules guarantee simple, low-cost and soldering-free assembly.

Maryling, Milan

VS products: LUGA Shop COB and LED drivers
Photographer/Architect: Casonato

Giordano, Jakarta

Foyer of the Torre Agbar tower

Giordano in the Living World Mall, Jakarta

The entire Living World Mall in Jakarta is illuminated solely using LEDs. The mall is located in Jakarta's Serpong business park and features a large selection of international brands, including the fashion outlet Giordano.

Due to the increase in energy costs in Indonesia, retailers and tenants in the Living World Mall were encouraged to convert to LED lamps and with that ensure a reduction in power consumption.

The choice was easy to make: Vossloh-Schwabe's highly efficient PAR38 LED lamps with their service life of up to 45,000 hours and a correspondingly low need for maintenance proved to be ideal for the project. Thanks to the E27 base and 38° radiation angle of the PAR38 lamps, exchanging the previously installed 70 W HID lamps required only minimal effort. Apart from the expected energy savings, these new LED lamps have also resulted in a decisive reduction in CO_{2} emissions in the interest of countering global warming.

Available in different colour temperatures and with various angles of radiation, these dimmable LED lamps are mercury-free, energy-saving and will not impair products (IR- and UV-free). In addition, their energy efficiency, eco-friendliness and high light output have set standards for other Giordano outlets. LED lamps are set to feature in further Giordano branches in the future

[^0]
Torre Agbar, Barcelona

With its height of 142 metres, 34 floors above ground level and a usable floor space totalling 39,000 square metres, the Torre Agbar - Catalan for "Agbar Tower" - is one of Catalonia's tallest buildings and the new symbol of the 22@Barcelona technology centre.

Designed by architect Jean Nouvel in cooperation with the b720 Arquitectos company, the tower's dazzling, 16,000 square metre fac̦ade lets the tower appear like a water fountain. The outer aluminium shell of the tower resembles the skin of a reptile or a large, fluid, organic mass. The mountains of Montserrat and the works of the Catalan architect Antoni Gaudí, served as inspiration for the shape of the tower.

The special colours of the tower were also chosen for a reason. As the client, Grupo Agbar, is Barcelona's municipal waterworks (Aguas de Barcelona, or Aigües de Barcelona in Catalan), this influenced the tower's iridescent and colourful appearance. The immediate vicinity of the building was designed in such a way as to give onlookers the impression that the tower is standing in a body of water.

Consisting mainly of office space, a cafeteria and a multi-purpose hall, the building was inaugurated by the Spanish King on 16 October 2005.

For Vossloh-Schwabe, the "Torre Agbar" project began in September 2011. A need had been identified to improve the lighting situation in the foyer, the only solution to which was energy-efficient LED lighting in combination with DALI drivers and a LiCS Indoor light management system made by Vossloh-Schwabe. In cooperation with the customer, a projectspecific luminaire was developed on the basis of the VS LED Shop module (3000 K).

Photos Torre Agbar: José Tío

LED System Overview by Application Fields

ARCHITECTURE

LED modules

- M-Class: IP20, IP66, Allround, LightEngine
- S-Class: IP20, IP66, Allround, LightEngine
- AreaLED: IP20, IP66, Allround, LightEngine
- Streetlight FlatEmitter SMD

LED drivers

- Capacity range: 40-150 W
- Current supply: 350-1400 mA
- Dimming: DALI, PUSH, 1 - 10 V, power-reduction
- Variants: PrimeLine and Comfortline

Accessories

Luminaire protection device, power switches, switch units

LED modules

- High Power 24 V CA: White and RGB
- LEDLine Flex SMD Professional Indoor 24 V: White; Standard and High Brightness
- AluLED: IP20, IP64; White and RGB

LED Converters

- Comfortline 24 V :

Capacity range: $20,70,75,100,130,150 \mathrm{~W}$
Degree of protection: IP20, IP67

- Comfortline 12 V :

Capacity range: $12,15,30,50,70 \mathrm{~W}$
Degree of protection: IP20, IP67

LED Colour control

- DigilED: Manuell, DALI, DMX, IR, RF, Push, Mono, Slave

Accessories

Connecting technology: flatband cable, connector, PCB distributor

LED modules

- SYM I: IP20, IP66, Allround, LightEngine
- SYM II: IP20, IP66, Allround, LightEngine
- LUGA Industrial
- Industrial FlatEmitter SMD
- LUGA C

LED Converters

- Capacity range: 20-230 W
- Current supply: 350-1400 mA
- Dimming: DALI, PUSH, 1 - 10 V
- Variants: Comfortline and EasyLine

Accessories

Luminaire protection device, inrush current limiter, resistor network

LED modules

- LUGA Line: Linear COB modules
- LED Line SMD: Kit, ECO, L14/28/56, Slim
- LED Line Fix: LUGA and SMD
- LED Line AluFix: LUGA and SMD
- LED Light Panel SMD
- AreaLED: IP20, IP66, Allround, LightEngine
- Streetlight FlatEmitter SMD

LED drivers

- Capacity range: 40-150 W
- Current supply: 350-1400 mA
- Dimming: DALI, PUSH, 1-10 V, power-reduction
- Variants: PrimeLine and Comfortline

Accessories

Luminaire protection device, power switches, switch units

LED modules

- LUGA Shop

LED-Spots and Downlights

- Shopline: Standard, NEXT, EVO
- LUGA C
- Activeline: LUGA, COB 9.1, COB 7.1, COB 6.1, Quad
- Downlights Pro and Prime

LED drivers

- Capacity range: 10-60 W
- Current supply: 250-1050 mA

LED Lamps

- AR111
- PAR30, PAR38
- Dimming: DALI, PUSH, 1-10 V, 3C
- GUlO
- Variants: PrimeLine, Comfortline and Easyline

Accessories

Luminaire protection device, inrush current limiter, resistor network

LED modules

- PowerEmitter
- TriplePowerEmitter

LED modules

for direct connection to mains

- LEDSpot ReadyLine IP and MR16
- ReadyLine: S, DL and C

LED drivers

- Capacity range: 5,2-36 W
- Current supply: 150-1050 mA
- Dimming: Phase-cut dimmable
- Variants: ComfortLine and Easyline

Accessories

Reflectors, Optics

LED Spots and Downlights

- Single LEDSpots
- Activeline Pro
- DecolEDs

LED Lamps

- MR16
- GUlO
(

CONSTANT CURRENT LED MODULES, DRIVERS AND ACCESSORIES

The LED modules dealt with in this chapter are constant-currentoperated, built-in modules whose circuit board does not feature its own power-supply electronics. Circular and linear modules featuring various chip types are available.

Ensuring constant-current control of LED modules benefits permanent operation, efficiency (lm/Watt) and the service life of LEDs. Constant current control is particularly important for high-performance LEDs, as a module brightness of up to $10,000 \mathrm{Im}$ can be achieved.

Various brightness levels can be set by selecting the requisite operating Current ($350 \mathrm{~mA}, 500 \mathrm{~mA}, 700 \mathrm{~mA}, 1050 \mathrm{~mA}$). In this regard, the maximum admissible current must never be exceeded and heat development must be monitored.

Typical applications

- Installation in luminaires for general lighting purposes
- Residential lighting
- Reading lamps and spots
- Entertainment
- Retail lighting
- Architectural lighting
- Street lighting

The specifications contained in this catalogue can change due to technical innovations. Any such changes will be made without separate notification.

Please read the safety and installation instructions on the individual products as well as further technical information provided in the extensive product descriptions at
www.vossloh-schwabe.com.

Constant-current LED modules for all applications

Vossloh-Schwabe's constant-current-operated LED modules are characterised by their extreme efficiency, long service life and colour brilliance. The extensive range of different designs and brightness levels results in a multitude of application options.

Whether they are used for indoor or outdoor applications: VS LED modules can be found as a decorative and functional lighting source in offices, homes, buildings and on our streets. They are:

- highly efficient,
- characterised by a high CRI and
- extremely versatile.

Constant-current drivers for current-operated LED modules

To ensure safe operation of LEDs that are connected in series, the operating current must be kept at a constant value by the ballast. It is recommended to operate all high-performance LED modules in combination with an external constant-current driver.

To ensure the same current flows through every LED, high-performance LEDs can only be connected in series. For each respective application, the source of the constant-current must be selected to ensure the required current and sufficient voltage are supplied to the LED modules. The number of LED modules that can be connected to control gear is dependent on the forward bias of the respective modules.

LUGA Line RX 2015

Built-in PCB lighting modules

The new LUGA Line RX 2015 is characterised by its particularly easy-to-use mounting and connection options (ZHAGA-compliant hole spacing).
Thanks to producing a homogeneous light field without any discernible individual light points, these LED modules are ideal for use in reflectors in luminaires constructed for T 5 and T 8 lamps.

Technical notes

Dimensions: $280 \times 18.4 \mathrm{~mm}$ und $93 \times 18.4 \mathrm{~mm}$
On-board push terminal system WAGO 2059
Allowed operating temperature at t_{c} point:

$$
-40 \text { to } 85^{\circ} \mathrm{C}
$$

Use of external LED constant-current drivers required
Efficiency up to $148 \mathrm{~lm} / \mathrm{W}$
Colour rendering index R_{a} : $>80 />90$
Colour accuracy initially: 3 SDCM;
after 50,000 hrs. operating time: 4 SDCM
Lumen maintenance L80/B 10 :
50,000 hrs. (If 700 mA)
Unit: 60 pcs.

Typical applications

- Office lighting
- Retail lighting
- T5/T8 replacement as built-in module
- Furniture lighting

DMLO28

DML068

Products under development; preliminary technical datas

[^1]
Constant-current System - Linear

LUGA Line 2015
 45 Chips

Built-in PCB lighting modules

The linear LED COB modules produce a very high lumen output.
The modules are available in warm white, neutral white and cool white; they can also be seamlessly connected (no gaps).

The ceramic PCB ensures optimum thermal

 management. Thanks to producing a homogeneous light field without any discernible individual light points, these LED modules are ideal for use in reflectors in luminaires constructed for T5 and T8 lamps.
Technical notes

Dimensions: $280 \times 15 \mathrm{~mm}$
On-board push terminal system
Allowed operating temperature at tc point:

$$
-40 \text { to } 85^{\circ} \mathrm{C}
$$

Use of external LED constant-current drivers required
Ceramic PCB for optimum thermal management
Efficiency up to $160 \mathrm{~lm} / \mathrm{W}$
Colour rendering index $\mathrm{Ra}_{\mathrm{a}}:>80$
Colour accuracy initially: 3 SDCM;
after 50,000 hrs. operating time: 4 SDCM
Lumen maintenance L90/B 10 :
55,000 hrs. (If 700 mA)
Unit: 60 pcs.

Typical applications

- Office lighting
- Retail lighting
- T5/T8 replacement as built-in module
- Furniture lighting

Connection example

Type	Ref. No.	Number of LEDs pcs.	Colour	Correlated colour temperature* K	$\begin{aligned} & \text { Typ. lu } \\ & \text { and p } \\ & 350 \mathrm{~m} \\ & \mathrm{~lm} \end{aligned}$	inous flux wer con $1 \mathrm{Im} / \mathrm{W}$	$\begin{aligned} & \mathrm{xx} \text { and } \mathrm{e} \\ & \text { sumptior } \\ & 500 \mathrm{~m} \\ & \mathrm{Im} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ficiency, } \\ & \left(\text { Pele }^{* *}\right. \\ & 1 \mathrm{~lm} / \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { typical v } \\ & \begin{array}{l} 700 \mathrm{~mA} \\ \mathrm{Im} \\ \hline \end{array} \end{aligned}$	Itage $1 \mathrm{~lm} / \mathrm{W}$	$\begin{aligned} & \text { yp. } \\ & \begin{array}{l} 1050 \mathrm{~m} \\ \mathrm{Im} \\ \hline \end{array} \\ & \hline \end{aligned}$	$1 \mathrm{~lm} / \mathrm{W}$	Beam angle 。	$\begin{aligned} & \mathrm{CRI} \\ & \mathrm{R}_{\mathrm{a}} \end{aligned}$	
LUGA Line 201	5 with 45	LEDs				$\begin{aligned} & 1 \mathrm{~W} \\ & 14.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=7 \\ & \mathrm{U}_{\text {typ. }}= \end{aligned}$	$\begin{aligned} & \hline W \\ & 15.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=1 \\ & \mathrm{U}_{\text {typ. }}= \end{aligned}$	$\begin{aligned} & 5 \mathrm{~W} \\ & 6.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=10 \\ & \mathrm{U}_{\text {typ. }}= \end{aligned}$	$\begin{aligned} & 1 \mathrm{~W} \\ & 8.2 \mathrm{~V} \end{aligned}$			
DML059C27EC	556912	45	warm white	2700	725	142	1030	134	1400	122	2000	105	120	80	82
DML059C30EC	556926	45	warm white	3000	755	148	1075	140	1460	127	2080	109	120	80	82
DML059C30EBC	557228	45	warm white	3000 (below BBL)	715	140	1015	132	1380	120	1965	103	120	80	82
DML059C35EC	556927	45	neutral white	3500	775	152	1110	144	1500	130	2140	112	120	80	82
DML059C40EC	556928	45	neutral white	4000	800	157	1145	149	1550	135	2210	116	120	80	84
DML059C40EBC	557229	45	neutral white	4000 (below BBL)	745	146	1060	138	1440	125	2050	107	120	80	84
DML059C50EC	556929	45	cool white	5000	815	160	1165	151	1580	137	2250	118	120	80	84
DML059C65EC	556930	45	cool white	6500	805	158	1150	149	1560	136	2220	116	120	80	84

Emission data at $t_{p}=\left.65^{\circ} \mathrm{C}\right|^{*}$ Colour tolerance: 3 MacAdam | ** Production tolerance of luminous flux, efficiency, voltage and power consumption: $\pm 10 \%$
Min. CRI Ra: > 80

LUGA Line 2015
 - FOOD

Built-in PCB lighting modules

The linear LED COB modules produce a very high lumen output.
The modules can also be seamlessly connected (no gaps).

The ceramic PCB ensures optimum thermal management. Thanks to producing a homogeneous light field without any discernible individual light points, these LED modules are ideal for use in reflectors in luminaires constructed for T5 and T8 lamps.

Technical notes

Dimensions: $280 \times 15 \mathrm{~mm}$
On-board push terminal system
Allowed operating temperature at t_{c} point:

$$
-40 \text { to } 85^{\circ} \mathrm{C}
$$

Use of external LED constant-current drivers required
Ceramic PCB for optimum thermal management
Colour rendering index R_{a} : >80 or >70
Colour accuracy initially: 3 SDCM;
after 50,000 hrs. operating time: 4 SDCM
Lumen maintenance L90/B 10:
55,000 hrs. (If 700 mA)
Unit: 60 pcs.

Typical applications

- Installation in luminaires for general lighting purposes
- T5/T8 replacement as built-in module
- Retail lighting
especially for fresh food

(bread, fruits, vegetables, meat)
- Refrigerator lighting

Connection example

Type	Ref. No.	Colour	Correlated colour tempera- ture* (K)	Typ. luminous flux and efficiency, typ. voltage Utyp.) and power consumption $\left(P_{\text {el }}\right)^{* *}$				Typ. beam angle。	$\begin{aligned} & \text { Typ. CRI } \\ & \\ & R_{a} \\ & \hline \end{aligned}$	Typical applications
LUGA Line 2015 - FOOD				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=11.5 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=16.4 \mathrm{~V} \end{aligned}$		$\begin{aligned} & P_{\text {el }}=19.1 \mathrm{~W} \\ & U_{\text {typ. }}=18.2 \mathrm{~V} \end{aligned}$				
DML059G30EC	566047	warm white	3000	850	74	1210	63	120	85 (special spectrum: HiGa)	Bread, fruits, vegetables, cheese
DML059G40EC	556933	neutral white	4000	890	77	1265	66	120	85 (special spectrum: HiGa)	Fish, drugstore, drapery
DML059M19EC	556934	"white effect"	2000	675	59	965	51	120	82	Meat
DML059M40EC	556935	"pink effect"	4000	790	69	1125	59	120	70 (special spectrum: HiGa)	Meat

[^2]
Accessories for LUGA Line Modules

Other lead lengths on request

Feed-in connector

Feed in connector for power supply
Colour: - black

+ white
Max. permissible current: 1.5 A
Number of strands: 2
(Strand diameter: $0.09 \mathrm{~mm}^{2} /$ AWG28)
Type: 893
Ref. No.: 551131 $\quad X=310 \mathrm{~mm}$
Ref. No.: $550952 \quad X=610 \mathrm{~mm}$

PCB-PCB connector

Max. permissible current: 1.5 A
Type: 893
Ref. No.: 551129 $\quad X=43 \mathrm{~mm}$
Ref. No.: $549993 \quad X=61 \mathrm{~mm}$
Ref. No.: $549992 \quad X=220 \mathrm{~mm}$

End connector
Type: 893
Ref. No.: 551132

Plastic holder for LUGA Line modules

For fixing LUGA Line modules
Fixing hole for countersunk screw M3
With cable holder
Min. 2.5 pcs. per LUGA Line module needed
Ref. No.: 551039

Thermally conductive adhesive tape

Dimensions: $278 \times 13 \mathrm{~mm}$
Ref. No.: 548179

Constant-current System - Linear

LED Line SMD Kit

Built-in PCB lighting modules with optics

The LED Line SMD kit consists of SMD modules in two lengths (280 mm and 560 mm) as well as matching optics. LED modules and optics are an ideal LED solution to replace luminaires with T5/T8 lamps.
Both the optics and LED modules are easy to attach using standardised fixing holes (ZHAGAcompliant hole spacing) and screws.

VS also provides optics that are perfect for office, industrial and shop (e.g. supermarket) lighting.

Technical notes

Dimensions:
WU-M-480/501: $279.6 \times 39.6 \mathrm{~mm}$
WU-M-481 / 502: $560.6 \times 39.6 \mathrm{~mm}$
On-board push terminal system
Allowed operating temperature at t_{c} point:

$$
-20 \text { to } 75^{\circ} \mathrm{C}
$$

Use of external LED constant-current drivers required
Efficiency up to $170 \mathrm{~lm} / \mathrm{W}$
Colour rendering index $\mathrm{Ra}_{\mathrm{a}}:>80$
Lumen maintenance L80/B 10:
60,000 hrs. (If $350 \mathrm{~mA} ; \mathrm{tp} 50^{\circ} \mathrm{C}$)

Typical applications

- Office lighting
- Retail lighting
- Industrial lighting
- T5/T8 replacement as built-in module

Dimensions of SMD board

WU-M-480

WU-M-501

Without optics

WU-M-481

WU-M-502

LED Line SMD Kit

Built-in PCB lighting modules with optics

[^3]
LED Line SMD Kit

Technical notes optics

Dimensions: $280 \times 43 \mathrm{~mm}$. SMD Kits can be stringed together,
for modules $280 \mathrm{~mm}, 560 \mathrm{~mm}$ and module chains
Material: PMMA
Fixation with flat or cylinder head screws (M4)
Max. torque: 1.2 Nm (M4)

Optics type	Ref. No.	Efficiency $\%$	Weight g	Unit pcs.
Standard	$\mathbf{5 5 5 4 3 7}$	95	50	192
Retail SYM	$\mathbf{5 5 5 4 3 8}$	95	50	192
Retail ASYM	$\mathbf{5 5 5 4 3 9}$	95	50	192
Diffuse	$\mathbf{5 5 9 9 7 2}$	88	50	192

End cap

Lateral tongue and groove for optics attachment

Weight: 0.9 g , unit: 500 pcs.
Type: 98810
Ref. No.: 555482

Constant-current System - Linear

LED Line SMD L14/28/56 W2

Built-in PCB lighting modules

The SMD PCB LED Line SMD L14/28/56 W is optimally suited for use in classic T5/T8 luminaires. Available in three different lengths $(140 \mathrm{~mm}, 280 \mathrm{~mm}$ and 560 mm), the LED modules are easy to fix.

Technical notes

Dimensions:

> WU-M-507/508: $140 \times 20 \mathrm{~mm}$
> WU-M-509/510: $280 \times 20 \mathrm{~mm}$
> WU-M-511/512: $560 \times 20 \mathrm{~mm}$

On-board push terminal system (WAGO 2060)
Allowed operating temperature at t_{c} point:

$$
-20 \text { to } 75^{\circ} \mathrm{C}
$$

Use of external LED constant-current drivers required
Aluminium PCB for optimum thermal management
Efficiency up to $165 \mathrm{~lm} / \mathrm{W}$
Colour rendering index Ra_{a} : 80
Lumen maintenance L80/B 10 :

$$
\text { up to } \left.60,000 \text { hrs. (} 1_{\mathrm{F}} 700 \mathrm{~mA}, t_{p}=50^{\circ} \mathrm{C}\right)
$$

Typical applications

- Installation in luminaires for general lighting purposes
- Office lighting
- Retail, corridor and shelf lighting
- T5/T8 replacement as built-in module
- Furniture lighting
- Backlighting for advertising

Connection example

LED Line SMD L14/28/56 W2

Built-in PCB lighting modules

[^4]
Constant-current System - Linear

LED Line SMD L14/28/56 W2

Built-in PCB lighting modules

Type	Ref. No.	Number of LEDs pcs.	Colour	Correlated colour temperature K	Luminous typical 350 mA min. Im	us flux* voltage A typ. Im	(Im) and (Utyp.) a typ. Im/W	typ. effic and powe 500 m min. Im	iency $/ l m$ r consum A typ. Im	/W), mption (P typ. Im/W	l) 700 mA min. Im	$\begin{aligned} & \text { A } \\ & \left\lvert\, \begin{array}{l} \text { typ. } \\ \text { Im } \end{array}\right. \end{aligned}$	typ. $\operatorname{lm} / \mathrm{W}$	Beam angle	CRI Ra_{a} min.	typ.
LED Line SMD L56 W2 - 20 LEDs					$\mathrm{P}_{\mathrm{el}}=4 \mathrm{~W}$			$\mathrm{P}_{\text {el }}=5$ $\mathrm{U}_{\text {typ. }}=$	$U_{\text {typ. }}=11.9 \mathrm{~V}$		$\mathrm{U}_{\text {typ. }}=12.4 \mathrm{~V}$					
WU-M-5 11 1-830	558000	20	warm white	3000	525	580	145	725	800	136	985	1080	124	120	80	85
WU-M-5 11 1-840	558001	20	neutral white	4000	525	630	158	725	870	147	985	1180	136	120	80	85
WU-M-5 11 1-850	559220	20	neutral white	5000	525	660	165	725	910	154	985	1235	142	120	80	85
WU-M-5 11-865	559221	20	cool white	6500	525	660	165	725	910	154	985	1235	142	120	80	85
High Brightness					$\mathrm{P}_{\mathrm{el}}=8 \mathrm{~W}$			$\mathrm{P}_{\text {el }}=1$ $U_{\text {typ. }}=$	1.8 W 23.6 V		$\mathrm{P}_{\mathrm{el}}=17.1 \mathrm{~W}$					
WU-M-5 11-HB-830**	559222	20	warm white	3000	990	1095	137	1385	1535	130	1860	2060	120	120	80	85
WU-M-5 1 1-HB-840**	559223	20	neutral white	4000	990	1185	148	1385	1660	141	1860	2225	130	120	80	85
WU-M-5 11 -HB-850**	559224	20	neutral white	5000	990	1245	156	1385	1740	147	1860	2335	137	120	80	85
WU-M-5 11 -HB-865**	559225	20	cool white	6500	990	1245	156	1385	1740	147	1860	2335	137	120	80	85
LED Line SMD L56 W2 - 40 LEDs					$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=8 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=22.9 \mathrm{~V} \end{aligned}$			$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=11.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=23.8 \mathrm{~V} \end{aligned}$			$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=17.3 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=24.8 \mathrm{~V} \end{aligned}$					
WU-M-5 $12-830$	558002	40	warm white	3000	1050	1155	144	1455	1595	134	1970	2165	125	120	80	85
WU-M-5 $12-840$	558003	40	neutral white	4000	1050	1260	158	1455	1740	146	1970	2355	136	120	80	85
WU-M-5 $12-850$	559226	40	neutral white	5000	1050	1320	165	1455	1825	153	1970	2475	143	120	80	85
WU-M-5 $12-865$	559227	40	cool white	6500	1050	1320	165	1455	1825	153	1970	2475	143	120	80	85
LED Line SMD L56 W2 - 40 LEDs High Brightness					$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=15.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=45.5 \mathrm{~V} \end{aligned}$			$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=23.6 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=47.1 \mathrm{~V} \end{aligned}$			$\begin{aligned} & \hline \mathrm{Pel}_{\mathrm{el}}=34.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=48.8 \mathrm{~V} \end{aligned}$					
WU-M-5 12-HB-830**	558827	40	warm white	3000	1980	2159	138	2775	3070	130	3720	4120	120	120	80	85
WU-M-5 $12-\mathrm{HB}-840$ * *	559229	40	neutral white	4000	1980	2370	149	2775	3315	140	3720	4450	130	120	80	85
WU-M-5 $12-\mathrm{HB}-850$ *	559232	40	neutral white	5000	1980	2485	156	2775	3480	147	3720	4670	137	120	80	85
WU-M-5 $12-\mathrm{HB}-865^{* *}$	559234	40	cool white	6500	1980	2485	156	2775	3480	147	3720	4670	137	120	80	85

[^5]
LED Line SMD Slim

Equipped with SMD Line LED modules

Consisting of one energy-efficient LED Line SMD Slim, a thermo-conductive resin adhesive tape and a cover, this LED Line Slim constitutes an ideal way of facilitating direct conversion to modern LED technology.

Enabling fast, reliable and flexible fixing inside the luminaire via

- adhesive tape
- clip fitting (Zhaga-compliant)
- screw fitting
the unit constitutes an ideal solution for indoor linear lighting applications.

Lighting modules with cover

LED Line SMD Slim consists of an energy-efficient linear SMD module and a cover with several attachment options. The module was designed for integration into indoor luminaires providing direct or indirect light.

The fast, safe and flexible adhesive-based, click on (ZHAGA-compliant L56W2 hole spacing) or screw-based options for fixing the module within the luminaire constitute an ideal solution for linear lighting applications.

The light module is fitted with either a clear or diffuse cover that serves to protect it and, in the diffuse version, to reduce glare and distribute light in a similar manner to a fluorescent lamp.

Optical characteristics

at $t_{p}=50^{\circ} \mathrm{C}$
The specified values apply only to the version of the LED module without a cover.
The following efficiency levels can be achieved when using a cover: clear (97\%), diffuse (90\%)

Type

[^6]
Constant-current System - Linear

LED Line SMD Slim

Ref. No. LED Line SMD Slim - $\mathbf{2 8 0} \mathbf{~ m m}$

Fixing	For tape fixing - type: 89510		For screw fixing - type: 89511		For clip fixing - type: 89512	
Cover	Clear	Diffuse	Clear	Diffuse	Clear	Diffuse
SMD0283000	557767	557769	558182	558184	558186	558188
SMD0284000	557768	557770	558183	558185	558187	558189

Ref. No. LED Line SMD Slim - 560 mm

Fixing	For tape fixing - type: 89560		For screw fixing - type: 89561		For clip fixing - type: 89562	
Cover	Clear	Diffuse	Clear	Diffuse	Clear	Diffuse
SMD0563000	557440	557442	557445	557448	557452	557455
SMD0564000	557441	557443	557447	557449	557453	557456

LED Line SMD Slim for tape fixing

With cover
Degree of protection: IP20
With base thermal tapes
Weight: 30.5/67 g, unit: 6 pcs.
Type: 89510/89560

Module length mm	Drawing	Dimensions $(\mathrm{L} \times \mathrm{W} \times \mathrm{H})$ mm
280	A	$285 \times 24 \times 10.5$
560	B	$565 \times 24 \times 10.5$

LED Line SMD Slim for screw fixing

With cover
Degree of protection: IP20
Fixing holes for screws M4
Tightening torque: 0.6-0.7 Nm
With base thermal tapes
Weight: $31 / 69 \mathrm{~g}$, unit: 4 pcs.
Type: 89511/89561

Module length mm	Drawing	Dimensions $(\mathrm{L} \times \mathrm{W} \times \mathrm{H})$ mm
280	C	$285 \times 39 \times 10.5$
560	D	$565 \times 39 \times 10.5$

LED Line SMD Slim for clip fixing

With cover
Degree of protection: IP20
Base fixing clips for wall thickness 0.4 - 1 mm
With base thermal tapes
Weight: $30.5 / 68 \mathrm{~g}$, unit: 6 pcs.
Type: 89512/89562

Module length mm	Drawing	Dimensions $(\mathrm{L} \times \mathrm{W} \times \mathrm{H})$ mm
280	E	$285 \times 24 \times 10.5$
560	F	$565 \times 24 \times 10.5$

A - For tape fixing - type 89510 - LED Line SMD Slim 280

B - For tape fixing - type 89560 - LED Line SMD Slim 560

D - For screw fixing - type 89561 - LED Line SMD Slim 560

E - For clip fixing - type 89512 - LED Line SMD Slim 280

F - For clip fixing - type 89562 - LED Line SMD Slim 560

Constant-current System - Linear

LED Line Fix LUGA 2015

Lighting modules with holder and cover
LED Line Fix LUGA consists of an energy-efficient linear COB module, a holder with various attachment options and a cover. The module was designed for integration into indoor luminaires providing direct or indirect light.

The fast, safe and flexible adhesive-based, click on (ZHAGA-compliant L28/L56W4 hole spacing) or screw-based options for fixing the module within the luminaire constitute an ideal solution for linear lighting applications.

The light module forms a single unit consisting of a holder made of a thermoconductive polymer plus a clear or diffuse cover that protects the LED module and electrically isolates it from the luminaire.

The diffuse cover reduces glare and distributes light in a similar manner to a fluorescent lamp.

Technical notes LUGA Line module

On-board push terminal system: Electrical connection with lateral connection leads 28AWG
Allowed operating temperature at tc point: -40 to $85^{\circ} \mathrm{C}$
Efficiency up to $160 \mathrm{~lm} / \mathrm{W}$
Colour rendering index Ra_{a} : 80
Colour accuracy initially: 3 SDCM;
after 50,000 hrs. operating time: 4 SDCM
Lumen maintenance L90/B 10 :
55,000 hrs. (IF 700 mA)

Typical applications

- Office and school lighting
- Retail lighting
- Industrial lighting
- For replacement of T5 and T8 lamps

Constant-current System - Linear

LED Line Fix LUGA 2015

Optical characteristics

at $t_{p}=65^{\circ} \mathrm{C}$
The specified values apply only to the version of the LED module without a cover.
The following efficiency levels can be achieved when using a cover: clear (97\%), diffuse (90\%)

Type	Number of LEDs pcs.	Colour	Correlated colour temperature	Typ. luminous flux and efficiency, typical voltage (Utyp.) and power consumption $\left(\mathrm{Pe}_{\mathrm{e}}\right)^{*}$								Beam angle	Typ. CRIR_{a}
				$\begin{aligned} & 350 \mathrm{~mA} \\ & \mathrm{~lm} \end{aligned}$	$\operatorname{lm} / \mathrm{W}$		$\operatorname{lm} / \mathrm{W}$		$\operatorname{lm} / \mathrm{W}$	$\begin{aligned} & 1050 \\ & \operatorname{lm} \\ & \hline \end{aligned}$	Im/W		
For LED Line Fix LUGA 2015-280 mm				$\begin{aligned} & P_{\text {el }}=5.1 \mathrm{~W} \\ & U_{\text {typ. }}=14.7 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=7.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=15.4 \mathrm{~V} \end{aligned}$		$\begin{aligned} & P_{\text {el }}=11.5 \mathrm{~W} \\ & U_{\text {typ. }}=16.4 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=19.1 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=18.2 \mathrm{~V} \end{aligned}$			
DML059C27EC	45	warm white	2700	725	142	1030	142	1400	122	2000	105	120	82
DML059C30EC	45	warm white	3000	755	148	1075	148	1460	127	2080	109	120	82
DML059C40EC	45	neutral white	4000	800	157	1145	157	1550	135	2210	116	120	84
For LED Line Fix LUGA 2015-560 mm (2 wired LED modules per holder)				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=10.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=29.4 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline P_{\text {el }}=15.4 \mathrm{~W} \\ & U_{\text {typ. }}=30.8 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{Pel}_{\mathrm{el}}=23 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=32.8 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\text {el }}=38.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=36.4 \mathrm{~V} \end{aligned}$			
DML059C27EC	2×45	warm white	2700	1450	142	2060	142	2800	122	4000	105	120	82
DML059C30EC	2×45	warm white	3000	1510	148	2150	148	2920	127	4160	109	120	82
DML059C40EC	2×45	neutral white	4000	1600	157	2290	157	3100	135	4420	116	120	84

* Production tolerance of luminous flux, efficiency, voltage and power consumption: $\pm 10 \%$

Ref. No. LED Line Fix LUGA 2015-280 mm

Fixing	For tape fixing - type: 89300			For screw fixing - type: 89301			For clip fixing - type: 89302	
Cover	Without	Clear	Diffuse	Without	Clear	Diffuse	Clear	Diffuse
DML059C27EC	558667	558670	558673	558676	558679	558682	558685	558688
DML059C30EC	558668	558671	558674	558677	558680	558683	558686	558689
DML059C40EC	558669	558672	558675	558678	558681	558684	558687	558690

Ref. No. LED Line Fix LUGA 2015-560 mm (2 wired LED modules per holder)

Fixing	For tape fixing - type: 89350			For screw fixing - type: 89351			For clip fixing - type: 89352	
Cover	Without	Clear	Diffuse	Without	Clear	Diffuse	Clear	Diffuse
DML059C27EC	558691	558694	558697	558700	558703	558706	558709	558712
DML059C30EC	558692	558695	558698	558701	558704	558707	558710	558713
DML059C40EC	558693	558696	558699	558702	558705	558708	558711	558714

LED Line Fix LUGA 2015-280 mm

Technical notes LED Line Fix holder

Holder material: thermo-conductive resin Lead exit: lateral or base wiring
When joining linear modules in a row, a minimum clearance of 1 mm between the fixing units must be observed due to thermal expansion.
The LED modules of versions with a cover are already fully wired. Additional connectors must be ordered separately for versions without a cover.

LED Line Fix LUGA for tape fixing

Without cover
Dimensions (LxWxH): $280 \times 23.2 \times 4.5 \mathrm{~mm}$
With base thermal tapes
Weight: 43 g, unit: 4 pcs.
Type: 89300, drawing A

With cover

Degree of protection: IP40
Dimensions ($\mathrm{L} \times W \times H$): $284 \times 23.2 \times 16.1 \mathrm{~mm}$
With base thermal tapes
Weight: 67 g , unit: 4 pcs.
Type: 89300, drawing B

LED Line Fix LUGA for screw fixing

Without cover
Dimensions ($L \times W \times H$): $280 \times 40 \times 4.5 \mathrm{~mm}$
Fixing holes for screws M4
Tightening torque: $0.6-0.7 \mathrm{Nm}$
Weight: 43 g , unit: 4 pcs.
Type: 89301, drawing C

With cover

Degree of protection: IP40
Dimensions ($\mathrm{L} \times W \times H$): $284 \times 40 \times 16.1 \mathrm{~mm}$
Fixing holes for screws M4
Tightening torque: $0.6-0.7 \mathrm{Nm}$
Weight: 67 g , unit: 4 pcs.
Type: 89301, drawing D

LED Line Fix LUGA for clip fixing

With cover
Degree of protection: IP40
Dimensions ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$): $284 \times 23.2 \times 16.1 \mathrm{~mm}$
Base fixing clips for wall thickness $0.4-1 \mathrm{~mm}$ With base thermal tapes
Weight: 67 g , unit: 4 pcs.
Type: 89302, drawing E

A - For tape fixing - type 89300-LED Line Fix LUGA 2015-280
$\stackrel{\sim}{\nabla}$

B - For tape fixing - type 89300 - LED Line Fix LUGA 2015-280

D - For screw fixing - type 89301 - LED Line Fix LUGA 2015-280

E - For clip fixing - type 89302 - LED Line Fix LUGA 2015-280

LED Line Fix LUGA 2015-560 mm

Technical notes LED Line Fix holder

Holder material: thermo-conductive resin Lead exit: lateral or base wiring
When joining linear modules in a row, a minimum clearance of 1 mm between the fixing units must be observed due to thermal expansion.
The LED modules of versions with a cover are already fully wired. Additional connectors must be ordered separately for versions without a cover.

LED Line Fix LUGA for tape fixing

Without cover
Dimensions ($L \times W \times H$): $561 \times 23.2 \times 4.5 \mathrm{~mm}$
With base thermal tapes
Weight: 86 g , unit: 4 pcs.
Type: 89350, drawing F

With cover

Degree of protection: IP40
Dimensions $(L \times W \times H): 565 \times 23.2 \times 16.1 \mathrm{~mm}$
With base thermal tapes
Weight: 135 g , unit: 4 pcs.
Type: 89350, drawing G

LED Line Fix LUGA for screw fixing

Without cover
Dimensions ($L \times W \times H$): $561 \times 40 \times 4.5 \mathrm{~mm}$
Fixing holes for screws M4
Tightening torque: 0.6-0.7 Nm
Weight: 86 g , unit: 4 pcs.
Type: 89351, drawing H

With cover

Degree of protection: IP40
Dimensions ($\mathrm{L} \times W \times H$): $565 \times 40 \times 16.1 \mathrm{~mm}$
Fixing holes for screws M4
Tightening torque: $0.6-0.7 \mathrm{Nm}$
Weight: 135 g , unit: 4 pcs.
Type: 89351, drawing J

LED Line Fix LUGA for clip fixing

With cover
Degree of protection: IP40
Dimensions $(L \times W \times H): 565 \times 23.2 \times 16.1 \mathrm{~mm}$
Base fixing clips for wall thickness $0.4-1 \mathrm{~mm}$ With base thermal tapes
Weight: 135 g , unit: 4 pcs.
Type: 89352, drawing K

F - For tape fixing - type 89350-LED Line Fix LUGA 2015-560

H - For screw fixing - type 89351 - LED Line Fix LUGA 2015-560

J - For screw fixing - type 89351 - LED Line Fix LUGA 2015-560

K - For clip fixing - type 89352 - LED Line Fix LUGA 2015-560

Covers

Technical notes LED Line Fix cover

Material: PC, clear or diffuse
Efficency covers: clear 97\%, diffuse 90\%

Covers for LED Line Fix

 for tape and screw fixingFor type: 89300/89301, LED Line Fix 280 mm
Ref. No.: 549585 clear
Ref. No.: 549586 diffuse

For type: 89350/89351, LED Line Fix 560 mm

Ref. No.: 550912
 clear

Ref. No.: 550913 diffuse

Covers for LED Line Fix

for clip fixing

Longer fixing clips of cover for fixing the holder into the luminaire sheet
For wall thickness 0.4-1 mm
For type: 89302, LED Line Fix 280 mm
Ref. No.: 549994 clear
Ref. No.: 549995 diffuse

For type: 89352, LED Line Fix 560 mm
Ref. No.: 550914 clear
Ref. No.: 550915 diffuse

Luminaire cut-outs for clip fixing
For type 89302 - LED Line Fix 280 mm

For type 89352 - LED Line Fix 560 mm

Connectors

You will find connectors for the LED Line Fix LUGA on page 13.

LED Line Fix SMD

Lighting modules with holder and cover
LED Line Fix SMD consists of an energy-efficient linear SMD module, a holder with various attachment options and a cover. The module was designed for integration into indoor luminaires providing direct or indirect light.

The fast, safe and flexible adhesive-based, click on (ZHAGA-compliant L28/L56W4) hole spacing) or screw-based options for fixing the module within the luminaire constitute an ideal solution for linear lighting applications.

The light module forms a single unit consisting of a holder made of a thermoconductive polymer plus a clear or diffuse cover that protects the LED module and electrically isolates it from the luminaire.

The diffuse cover reduces glare and distributes light in a similar manner to a fluorescent lamp.

Electrical characteristics

at $t_{p}=50^{\circ} \mathrm{C}$
The specified values apply only to the version of the LED module without a cover.
The following efficiency levels can be achieved when using a cover: clear (97%), diffuse (90%)

Technical notes SMD Line modules

On-board push-in terminals: $0.34 \mathrm{~mm}^{2}$, for solid leads Allowed operating temperature at tc point:

$$
-20 \text { to } 75^{\circ} \mathrm{C}
$$

Use of external LED constant-current drivers required
Efficiency up to $166 \mathrm{~lm} / \mathrm{W}$

Colour rendering index Ra_{a} min. 80
Colour accuracy: 3 SDCM
Lumen maintenance L80/B 10 :

$$
\left.>60,000 \text { hrs. (IF } 700 \mathrm{~mA}, \mathrm{tp}_{\mathrm{p}}=50^{\circ} \mathrm{C}\right)
$$

Typical applications

- Office and school lighting
- Retail lighting
- Industrial lighting
- For replacement of T5 and T8 lamps

With clear cover
With diffuse cover

Type

* Measurement tolerance of luminous flux: $\pm 7 \%$

Ref. No. LED Line Fix SMD 280

Fixing	For tape fixing - type: 89500			For screw fixing - type: 89501			For clip fixing - type: 89502	
Cover	Without	Clear	Diffuse	Without	Clear	Diffuse	Clear	Diffuse
SMD56/30/280	557460	557462	557464	557466	557468	557470	557472	557474
SMD56/40/280	557461	557463	557465	557467	557469	557471	557473	557475

Ref. No. LED Line Fix SMD 560

Fixing	For tape fixing - type: 89550			For screw fixing - type: 89551			For clip fixing - type: 89552	
Cover	Without	Clear	Diffuse	Without	Clear	Diffuse	Clear	Diffuse
SMD56/30/560	557394	557396	557398	557400	557402	557404	557406	557408
SMD56/40/560	557395	557397	557399	557401	557403	557405	557407	557409

LED Line Fix SMD

Technical notes LED Line Fix holder

Holder material: thermo-conductive resin
When joining linear modules in a row, a minimum clearance of 1 mm between the fixing units must be observed due to thermal expansion.

LED Line Fix SMD for tape fixing

With base thermal tapes
Weight: 95/142 g, unit: 4 pcs.
Type: 89500/89550

Module length mm	Drawing	Degree of protection	Dimensions $(\mathrm{L} \times \mathrm{W} \times \mathrm{H}) \mathrm{mm}$
Without cover			
280	A	-	$280 \times 23.2 \times 4.5$
560	C	-	$561 \times 23.2 \times 4.5$
With cover	B	IP20	$284 \times 23.2 \times 16.1$
280	D	IP20	$565 \times 23.2 \times 16.1$
560			

LED Line Fix SMD for screw fixing

Fixing holes for screws M4
Tightening torque: 0.6-0.7 Nm
Weight: 96/143 g, unit: 4 pcs.
Type: 89501/89551

Module length mm	Drawing	Degree of protection	Dimensions $(L \times W \times H) \mathrm{mm}$
Without cover			
280	E	-	$280 \times 40 \times 4.5$
560	G	-	$561 \times 40 \times 4.5$
With cover	F	IP20	$284 \times 40 \times 16.1$
280	H	IP20	$565 \times 40 \times 16.1$
560			

LED Line Fix SMD for clip fixing
With base thermal tapes
Base fixing clips for wall thickness 0.4 - 1 mm
Weight: 95/142 g, unit: 4 pcs.
Type: 89502/89552

Module length mm	Drawing	Degree of protection	Dimensions $(L \times W \times H) \mathrm{mm}$
With cover	K	IP20	$284 \times 23.2 \times 16,1$
280	L	IP20	$565 \times 23.2 \times 16,1$
560			

LED Line Fix SMD - For tape fixing

A - Type 89500-280 mm
Without cover

C - Type 89550-560 mm

Without cover

B - Type 89500-280 mm With cover

D - Type 89550-560 mm
With cover

LED Line Fix SMD - For screw fixing

E - Type 89501 - 280 mm
Without cover

G - Type 89551-560 mm

H - Type 89551-560 mm

LED Line Fix SMD - For clip fixing

K - Type 89502-280 mm
With cover

L - Type 89552-560 mm

Constant-current System - Linear

LED Line Fix SMD

Technical notes LED Line Fix cover

Material: PC, clear or diffuse
Lead exit: lateral push-in holes
Efficency covers: clear 97\%, diffuse 90\%

Covers for LED Line Fix $\mathbf{2 8 0} \mathbf{~ m m}$

for tape and screw fixing
For type: 89500/89501
Ref. No.: 554044 clear
Ref. No.: 554045 diffuse

For clip fixing

Longer fixing clips of cover for fixing the holder into the luminaire sheet
For wall thickness 0.4-1 mm
For type: 89502
Ref. No.: 554046 clear
Ref. No.: 554047 diffuse

Covers for LED Line Fix

for tape and screw fixing
For type: 89550/89551
Ref. No.: 551588 clear
Ref. No.: 551589 diffuse

For clip fixing

Longer fixing clips of cover for fixing the holder into the luminaire sheet
For wall thickness 0.4-1 mm
For type: 89552
Ref. No.: 551590 clear
Ref. No.: 551591 diffuse

Luminaire cut-outs for clip fixing

Luminaire cut-outs for clip fixing

LED Line AluFix LUGA 2015

Lighting modules with holder and cover
LED Line AluFix LUGA consists of an energy-efficient linear COB module, an aluminium holder and a clear cover or, alternatively, optics. The module was designed for integration into indoor luminaires providing direct or indirect light.

The light module is available with up to five pre-wired LUGA modules in lengths of 305 to $1,429 \mathrm{~mm}$.

The robust aluminium holder serves to optimise thermal management and is easy to attach using M3 screws. The clear or diffuse cover protects LED modules from environmental factors.
The diffuse cover reduces glare and distributes light in a similar manner to a fluorescent lamp.

Enabling the kind of light distribution typically required in offices or shops, the optics versions facilitate luminaire designs that can do without an additional light guidance system. The high-quality optics consist of only one unit, regardless of its length, and therefore provide optimal protection for LED modules and ensure homogeneously illuminated surfaces without optical interruptions.

Technical notes

Further shapes and optics on request.
For one to five LUGA Line modules
On-board push terminal system: Electrical connection with lateral connection leads 28AWG
Allowed operating temperature at t_{c} point:

$$
-40 \text { to } 85^{\circ} \mathrm{C}
$$

Use of external LED constant-current drivers required:
for drivers with UOUT < 150 V DC
Efficiency up to $157 \mathrm{~lm} / \mathrm{W}$
Colour rendering index Ra_{a} > 80
Colour accuracy initially: 3 SDCM; after 50,000 hrs. operating time: 4 SDCM
Lumen maintenance L90/B 10 :

$$
55,000 \mathrm{hrs} .\left(\mathrm{I}_{\mathrm{F}} 700 \mathrm{~mA}\right)
$$

Typical applications

- Office and school lighting
- Retail lighting
- Industrial lighting
- For replacement of T5 and T8 lamps

LED Line AluFix LUGA 2015

Optical characteristics of LUGA Line LED modules

at $t_{p}=65^{\circ} \mathrm{C}$ | The following efficiency levels can be achieved when using a cover: see data sheets

Type		Colour							ower	mption	
	of LEDs pcs.		temperature K		$\operatorname{lm} / \mathrm{W}$	$\begin{aligned} & 500 \mathrm{~m} \\ & \mathrm{~lm} \end{aligned}$	Im / W		$1 \mathrm{~m} / \mathrm{W}$		$1 \mathrm{~m} / \mathrm{W}$
For LED Line AluFix LUGA 2015-305 mm				$\begin{aligned} & P_{\text {el }}=5.1 \mathrm{~W} \\ & U_{\text {typ. }}=14.7 \mathrm{~V} \end{aligned}$		$\begin{aligned} & P_{\mathrm{el}}=7.7 \mathrm{~W} \\ & U_{\text {typ. }}=15.4 \mathrm{~V} \end{aligned}$		$\begin{aligned} & P_{\text {el }}=11.5 \mathrm{~W} \\ & U_{\text {typ. }}=16.4 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=19.1 \mathrm{~W} \\ & U_{\text {typ. }}=18.2 \mathrm{~V} \end{aligned}$	
DML059C27EC	45	warm white	2700	725	142	1030	134	1400	122	2000	105
DML059C30EC	45	warm white	3000	755	148	1075	140	1460	127	2080	109
DML059C40EC	45	neutral white	4000	800	157	1145	149	1550	135	2210	116
For LED Line AluFix LUGA 2015-586 mm (2 wired LED modules per aluminium profile)				$\begin{aligned} & P_{\text {el }}=10.2 \mathrm{~W} \\ & U_{\text {typ. }}=29.4 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=15.4 \mathrm{~W} \\ & U_{\text {typ. }}=30.8 \mathrm{~V} \end{aligned}$		$\begin{aligned} & P_{\text {el }}=23 \mathrm{~W} \\ & U_{\text {typ. }}=32.8 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=38.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=36.4 \mathrm{~V} \end{aligned}$	
DML059C27EC	2×45	warm white	2700	1450	142	2060	134	2800	122	4000	105
DML059C30EC	2×45	warm white	3000	1510	148	2150	140	2920	127	4160	109
DML059C40EC	2×45	neutral white	4000	1600	157	2290	149	3100	135	4420	116
For LED Line AluFix LUGA 2015-867 mm (3 wired LED modules per aluminium profile)				$\begin{aligned} & \mathrm{P}_{\text {el }}=15,3 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=44,1 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=23,1 \mathrm{~W} \\ & \text { Utyp. }=46,2 \mathrm{~V} \end{aligned}$		$\begin{aligned} & P_{\text {el }}=34,5 \mathrm{~W} \\ & U_{\text {typ. }}=49,2 \mathrm{~V} \end{aligned}$		$\begin{aligned} & P_{\mathrm{el}}=57,3 \mathrm{~W} \\ & U_{\text {typ. }}=54,6 \mathrm{~V} \end{aligned}$	
DML059C27EC	3×45	warm white	2700	2175	142	3090	134	4200	122	6000	105
DML059C30EC	3×45	warm white	3000	2265	148	3225	140	4380	127	6240	109
DML059C40EC	3×45	neutral white	4000	2400	157	3435	149	4650	135	6630	116
For LED Line AluFix LUGA 2015-1148 mm (4 wired LED modules per aluminium profile)				$\begin{aligned} & P_{\mathrm{el}}=20.4 \mathrm{~W} \\ & U_{\text {typ. }}=58.8 \mathrm{~V} \end{aligned}$		$\begin{aligned} & P_{\mathrm{el}}=30.8 \mathrm{~W} \\ & U_{\text {typ. }}=61.6 \mathrm{~V} \end{aligned}$		$\begin{aligned} & P_{\mathrm{el}}=46 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=65.6 \mathrm{~V} \end{aligned}$		$\begin{aligned} & P_{\mathrm{el}}=76.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=72.8 \mathrm{~V} \\ & \hline \end{aligned}$	
DML059C27EC	4×45	warm white	2700	2900	142	4120	134	5600	122	8000	105
DML059C30EC	4×45	warm white	3000	3020	148	4300	140	5840	127	8320	109
DML059C40EC	4×45	neutral white	4000	3200	157	4580	149	6200	135	8840	116
For LED Line AluFix LUGA 2015-1429 mm (5 wired LED modules per aluminium profile)				$\begin{aligned} & P_{\mathrm{el}}=25.5 \mathrm{~W} \\ & U_{\text {typ. }}=73.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=38.5 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=77 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=57.5 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=82 \mathrm{~V} \end{aligned}$		$\begin{aligned} & P_{\mathrm{el}}=95.5 \mathrm{~W} \\ & U_{\text {typ. }}=91 \mathrm{~V} \end{aligned}$	
DML059C27EC	5×45	warm white	2700	3625	142	5150	134	7000	122	10000	105
DML059C30EC	5×45	warm white	3000	3775	148	5375	140	7300	127	10400	109
DML059C40EC	5×45	neutral white	4000	4000	157	5725	149	7750	135	11050	116

[^7]
Constant-current System - Linear

LED Line AluFix LUGA 2015

Technical notes

Material: Aluminium profile and PMMA cover
Rear connection leads, lead length: 70 mm
with 2-poles connector AMP Micro Mate-N-LOK 1445049-2
Degree of protection: IP40
Rear slots for screws M3
Tightening torque: 0.5 Nm

With clear cover

With diffuse cover

LED Line AluFix LUGA 2015 - Cover

Type	Dimensions $(L \times W \times H)$ in mm			Unit	Weight
	L	W	H	pcs.	g
89001	305	40.2	22	15	171
89002	586	40.2	22	15	330
89003	867	40.2	22	15	495
89004	1148	40.2	22	15	650
89005	1429	40.2	22	15	815

Ref. No. LED Line AluFix LUGA 2015 - Cover
The following efficiency levels can be achieved when using a cover: clear (97\%), diffuse (90\%)

Type / Total length	$\mathbf{8 9 0 0 1} / 305 \mathrm{~mm}$	$\mathbf{8 9 0 0 2} / 586 \mathrm{~mm}$	$\mathbf{8 9 0 0 3 / 8 6 7 \mathrm { mm }}$	$\mathbf{8 9 0 0 4 / 1 1 4 8 \mathrm { mm }}$	$\mathbf{8 9 0 0 5 / 1 4 2 9 \mathrm { mm }}$				
Cover	Clear	Diffuse	Clear	Diffuse	Clear	Diffuse	Clear	Diffuse	Clear
DMLO59C27EC	$\mathbf{5 5 8 4 9 1}$	$\mathbf{5 5 8 4 9 4}$	$\mathbf{5 5 8 4 9 7}$	$\mathbf{5 5 8 5 0 0}$	$\mathbf{5 5 8 5 0 3}$	$\mathbf{5 5 8 5 0 6}$	$\mathbf{5 5 8 5 0 9}$	$\mathbf{5 5 8 5 1 2}$	$\mathbf{5 5 8 5 1 5}$
DMLO59C3OEC	$\mathbf{5 5 8 4 9 2}$	$\mathbf{5 5 8 4 9 5}$	$\mathbf{5 5 8 4 9 8}$	$\mathbf{5 5 8 5 0 1}$	$\mathbf{5 5 8 5 0 4}$	$\mathbf{5 5 8 5 0 7}$	$\mathbf{5 5 8 5 1 8}$		
DMLO59C4OEC	$\mathbf{5 5 8 4 9 5}$	$\mathbf{5 5 8 4 9 6}$	$\mathbf{5 5 8 4 9 9}$	$\mathbf{5 5 8 5 0 2}$	$\mathbf{5 5 8 5 0 5}$	$\mathbf{5 5 8 5 0 8}$	$\mathbf{5 5 8 5 1 1}$	$\mathbf{5 5 8 5 1 3}$	$\mathbf{5 5 8 5 1 6}$

LED Line AluFix LUGA 2015 - Optics Office

Type	Dimensions (LxW×H) in mm			Unit	Weight
	L	W	H	pcs.	g
89011	305	36	15	15	165
89012	586	36	15	15	316
89013	867	36	15	15	466
89014	1148	36	15	15	617
89015	1429	36	15	15	767

Ref. No. LED Line Alufix LUGA 2015 - Optics Office

Efficency optics: 94\%

| Type / Total length | $\mathbf{8 9 0 1 1} / 305 \mathrm{~mm}$ | $\mathbf{8 9 0 1 2} / 586 \mathrm{~mm}$ | $\mathbf{8 9 0 1 3 / 8 6 7 \mathrm { mm }}$ | $\mathbf{8 9 0 1 4 / 1 1 4 8 \mathrm { mm }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMLO59C27EC | $\mathbf{5 5 8 5 2 1}$ | $\mathbf{5 5 8 5 2 4}$ | $\mathbf{5 5 8 5 1 5} / 1429 \mathrm{~mm}$ | |
| DMLO59C3OEC | $\mathbf{5 5 8 5 2 2}$ | $\mathbf{5 5 8 5 2 5}$ | $\mathbf{5 5 8 5 2 8}$ | $\mathbf{5 5 8 5 3 0}$ |
| DMLO59C4OEC | $\mathbf{5 5 8 5 2 3}$ | $\mathbf{5 5 8 5 2 6}$ | $\mathbf{5 5 8 5 2 9}$ | $\mathbf{5 5 8 5 3 1}$ |

Constant-current System - Linear

LED Line AluFix LUGA 2015

Technical notes

Material: Aluminium profile and PMMA cover
Rear connection leads, lead length: 70 mm
with 2-poles connector AMP Micro Mate-N-LOK 1445049-2
Degree of protection: IP40
Rear slots for screws M3
Tightening torque: 0.5 Nm

LED Line AluFix LUGA 2015 - Optics Retail 1-SYM

Type	Dimensions $(L \times W \times H)$ in mm			Unit	Weight
	L	W	H	pcs.	g
89021	305	36	15	15	165
89022	586	36	15	15	316
89023	867	36	15	15	466
89024	1148	36	15	15	617
89025	1429	36	15	15	767

$\square 0^{\circ}-180^{\circ} \square 9$
Retail 1-SYM
Ref. No. LED Line AluFix LUGA 2015 - Optics Retail 1-SYM
Efficency optics: 94\%

| Type / Total length | $\mathbf{8 9 0 2 1} / 305 \mathrm{~mm}$ | $\mathbf{8 9 0 2 2} / 586 \mathrm{~mm}$ | $\mathbf{8 9 0 2 3 / 8 6 7 \mathrm { mm }}$ | $\mathbf{8 9 0 2 4 / 1 1 4 8 \mathrm { mm }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMLO59C27EC | $\mathbf{5 5 8 6 2 8}$ | $\mathbf{5 5 8 6 3 1}$ | $\mathbf{8 5 9 0 2 5} / 1429 \mathrm{~mm}$ | |
| DMLO59C3OEC | $\mathbf{5 5 8 6 2 9}$ | $\mathbf{5 5 8 6 3 2}$ | $\mathbf{5 5 8 6 3 5}$ | $\mathbf{5 5 8 6 3 7}$ |
| DMLO59C4OEC | $\mathbf{5 5 8 6 3 0}$ | $\mathbf{5 5 8 6 3 3}$ | $\mathbf{5 5 8 6 3 6}$ | $\mathbf{5 5 8 6 3 8}$ |

LED Line AluFix LUGA 2015 - Optics Retail 1-ASYM

Type	Dimensions $(L \times W \times H)$ in mm			Unit	Weight
	L	W	H	pcs.	g
89031	305	36	15	15	165
89032	586	36	15	15	316
89033	867	36	15	15	466
89034	1148	36	15	15	617
89035	1429	36	15	15	767

Retail 1-ASYM

Ref. No. LED Line AluFix LUGA 2015 - Optics Retail 1-ASYM
Efficency optics: 94\%

| Type / Total length | $\mathbf{8 9 0 3 1} / 305 \mathrm{~mm}$ | $\mathbf{8 9 0 3 2} / 586 \mathrm{~mm}$ | $\mathbf{8 9 0 3 3 / 8 6 7 \mathrm { mm }}$ | $\mathbf{8 9 0 3 4 / 1 1 4 8 \mathrm { mm }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMLO59C27EC | $\mathbf{5 5 8 6 4 4}$ | $\mathbf{5 5 8 6 4 7}$ | $\mathbf{8 5 0 3 5} / 1429 \mathrm{~mm}$ | |
| DMLO59C3OEC | $\mathbf{5 5 8 6 4 5}$ | $\mathbf{5 5 5 6 4 8}$ | $\mathbf{5 5 5 6 5 1}$ | $\mathbf{5 5 5 6 5 3}$ |
| DMLO59C4OEC | $\mathbf{5 5 8 6 4 6}$ | $\mathbf{5 5 5 6 4 9}$ | $\mathbf{5 5 5 6 5 2}$ | $\mathbf{5 5 5 6 5 4}$ |

Connection leads

2-poles, ferrule on bare end of cores and AMP Micro Mate-N-LOK 1445022-2

	Lead length \mathbf{L}							
	100 mm	200 mm	300 mm	400 mm	500 mm	600 mm		
Ref. No.	$\mathbf{5 5 4 2 8 5}$	$\mathbf{5 5 4 2 8 6}$	$\mathbf{5 5 4 2 8 7}$	$\mathbf{5 5 4 2 8 8}$	$\mathbf{5 5 4 2 8 9}$	$\mathbf{5 5 4 2 9 0}$		

LED Line AluFix SMD
 - Cover

Lighting modules with holder and cover
LED Line AluFix SMD consists of an energy-efficient linear SMD module, an aluminium holder and a clear or diffuse cover. The module was designed for integration into indoor luminaires providing direct or indirect light.

The light module is available with up to five pre-wired SMD modules in lengths of 305 to $1,429 \mathrm{~mm}$ and is thus an ideal component for LED lighting strips.

The robust aluminium holder serves to optimise thermal management and is easy to attach using M3 screws. The clear or diffuse cover protects LED modules from environmental factors.

The diffuse cover reduces glare and distributes light in a similar manner to a fluorescent lamp.

Technical notes

Allowed operating temperature at t_{c} point: -20 to $75^{\circ} \mathrm{C}$
Use of external LED constant-current drivers required: for driver with UOUT < 250 V DC
Efficiency up to $166 \mathrm{~lm} / \mathrm{W}$

With clear cover

With diffuse cover

Colour rendering index Ra_{a} min. 80
Colour accuracy: 3 SDCM;
Lumen maintenance L80/B 10

$$
\left.>60,000 \text { hrs. (IF } 700 \mathrm{~mA}, t_{p}=50^{\circ} \mathrm{C}\right)
$$

Further shapes and optics on request.

Typical applications

- Office and school lighting
- Retail lighting
- Industrial lighting
- For replacement of T5 and T8 lamps

Optical characteristics

at $t_{p}=50^{\circ} \mathrm{C}$ | The following efficiency levels can be achieved when using a cover: clear (97\%), diffuse (90%)

Type			Correlated colour temperature K	Typ. luminous flux* and efficiency, typ. voltage ($\mathrm{U}_{\text {typ. }}$) and power consumption (Pel)					
	of LEDs pcs.			$\begin{aligned} & 350 \mathrm{mf} \\ & \mathrm{Im} \end{aligned}$	$1 \mathrm{Im} / \mathrm{W}$	$\begin{aligned} & 500 \mathrm{~m} \\ & \mathrm{~lm} \end{aligned}$	$1 \mathrm{Im} / \mathrm{W}$	$\begin{aligned} & 700 \mathrm{mf} \\ & \mathrm{~lm} \end{aligned}$	$\operatorname{lm} / \mathrm{W}$
For LED Line AluFix SMD Cover $\mathbf{- 3 0 5} \mathbf{~ m m}$ (1 SMD module 280 mm)				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=4.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=14.1 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=7.3 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=14.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=10.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=15.3 \mathrm{~V} \end{aligned}$	
AluFixSMD/305/30	1×30	warm white	3000	745	152	1015	139	1375	129
AluFixSMD/305/40	1×30	neutral white	4000	815	166	1105	151	1495	140
For LED Line AluFix SMD Cover - $\mathbf{5 8 6} \mathbf{~ m m}$ (1 SMD module 560 mm)				$\begin{aligned} & \mathrm{P}_{\mathrm{Pel}}=9.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=28.2 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=14.5 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=29 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=21.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=30.5 \mathrm{~V} \\ & \hline \end{aligned}$	
AluFixSMD/586/30	2×30	warm white	3000	1495	151	2030	140	2745	128
AluFixSMD/586/40	2×30	neutral white	4000	1630	165	2210	152	2990	140
For LED Line AluFix SMD Cover $\mathbf{- 8 6 7} \mathbf{~ m m}$$\text { (} 2 \text { wired SMD modules } 1 \times 560 \mathrm{~mm}+1 \times 280 \mathrm{~mm} \text { per aluminium profile) }$				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=14.8 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=42.3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=21.8 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=43.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=32.1 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=45.8 \mathrm{~V} \end{aligned}$	
AluFixSMD/867/30	3×30	warm white	3000	2240	151	3045	140	4120	128
AluFixSMD/867/40	3×30	neutral white	4000	2445	165	3315	152	4485	140
For LED Line AluFix SMD Cover - $\mathbf{1 1 4 8} \mathbf{~ m m}$ (2 wired SMD modules 560 mm per aluminium profile)				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=19.8 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=56.4 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=29 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=58 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=42.8 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=61 \mathrm{~V} \end{aligned}$	
AluFixSMD/1148/30	4×30	warm white	3000	2990	151	4060	140	5490	128
AluFixSMD/1148/40	4×30	neutral white	4000	3260	165	4420	152	5980	140
For LED Line AluFix SMD Cover - $\mathbf{1 4 2 9} \mathbf{~ m m}$$\qquad$				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=24.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=70.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=36.3 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=72.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=53.5 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=76.3 \mathrm{~V} \end{aligned}$	
AluFixSMD/1429/30	5×30	warm white	3000	3735	151	5075	140	6865	128
AluFixSMD/1429/40	5×30	neutral white	4000	4075	165	5525	152	7475	140

[^8]
Constant-current System - Linear

LED Line AluFix SMD - Cover

Technical notes LED Line AluFix cover
Material: Aluminium profile and PMMA cover
Rear connection leads: Cu tinned, single-core
$0.32 \mathrm{~mm}^{2}$ (AWG22), PVC-insulation, red and black,
notched lead ends, lead length: $L+80 \mathrm{~mm}$
Degree of protection: IP40
Rear slots for screws M3
Tightening torque: 0.5 Nm

Type	Dimensions $(\mathrm{L} \times \mathrm{W} \times H)$ in mm			Unit	Weight
	L	W	H	pcs.	g
89001	305	40.2	22	15	171
89002	586	40.2	22	15	330
89003	867	40.2	22	15	495
89004	1148	40.2	22	15	650
89005	1429	40.2	22	15	815

Ref. No. LED Line AluFix SMD - Cover - with linear SMD module 280

Type / Total length	89001 / 305 mm		89002 / 586 mm		89003 / 867 mm		89004 / 1148 mm		89005 / 1429 mm	
Cover	Clear	Diffuse								
SMD56/30/280	557856	557820	557858	557822	557860	557824	557862	557826	557864	557828
SMD56/40/280	557857	557821	557859	557823	557861	557825	557863	557827	557865	557829

Constant-current System

LED Light Panel SMD

Built-in lighting modules

The new LED light panels are a highly effective SMD solution for producing very homogeneous, widely distributed light. They are particularly suitable for integration in louvered luminaires $(600 \times 600 \mathrm{~mm})$.

These LED SMD modules are available in various shades of white and permit easy, cost-effective and solder-free connection using push-in connectors.

Technical notes

Dimensions: $249 \times 249 \mathrm{~mm}$
On-board push-in connector
Fixing holes: $\varnothing 4.5 \mathrm{~mm}$

Use of external LED constant-current drivers required
Efficiency up to $190 \mathrm{~lm} / \mathrm{W}$
Colour rendering index Ra: typ. 85
Lumen maintenance L80/B 10:
up to 60,000 hrs. (IF $350 \mathrm{~mA}, \mathrm{t}_{\mathrm{p}}=70^{\circ} \mathrm{C}$)
Unit: 50 pcs.

Typical applications

- Office lighting
- Retail lighting
- T5/T8 replacement as built-in module
- Furniture lighting
- Backlighting for advertising

Products under development; preliminary technical datas

[^9]
LUGA Shop 2015 PCB - 1000 Im to 8000 lm

Built-in lighting modules

This PCB version of the LUGA Shop 2015 series
provides the option of simply replacing LED modules
within their holder.

Simple and secure attachment is enabled with
separate holders (see page 42).

Technical notes

Dimensions: $19 \times 19 \mathrm{~mm}, 28 \times 28 \mathrm{~mm}$
Light emitting surface (LES): $\varnothing 14 \mathrm{~mm}, \varnothing 17 \mathrm{~mm}, \varnothing 20 \mathrm{~mm}$
On-board push-in terminal
Beam angle: 120°
Allowed operating temperature at t_{c} point:

$$
-40 \text { to } 80^{\circ} \mathrm{C}
$$

Use of external LED constant current driver
Efficiency up to $172 \mathrm{~lm} / \mathrm{W}$
Colour rendering index Ra: typ. > $70 />80 />90$
Colour accuracy initially: 3 SDCM;
after 50,000 hrs. operating time: 4 SDCM
Lumen maintenance L90/B 10 :

$$
>52,000 \mathrm{hrs} .\left(\mathrm{I}_{\mathrm{F}} 700 \mathrm{~mA}, \mathrm{t}_{\mathrm{p}}=65^{\circ} \mathrm{C}\right)
$$

Unit: 175 pcs. (DMS099),
100 pcs. (DMS 120/DMS 150)

Typical applications

Integration in

- Reflector luminaires
- Flat surface-mounting luminaires
- Cladding illumination
- Suspended luminaire with external control gear

For use in

- Retail lighting

- Furniture lighting
- Stairway and corridor illumination

DMS 150***F

DMS 120***F

LUGA Shop 2015 PCB - 1000 lm to 8000 lm

Characteristics

- Optimized for retail and furniture illumination
- Version CRI 70 for industrial and outdoor lighting
- Highly efficient: up to 164 lm/W

LUGA Shop 2015 PCB - CRI Ra> 80 (70)

Type	Ref. No.	Colour	Correlated colour temperature * (K)											$\begin{aligned} & \text { Typ. } \\ & \text { CRI } \\ & R_{a} \\ & \hline \end{aligned}$
				$\begin{array}{l\|l} 350 \mathrm{~mA} \\ \mathrm{~lm} & \mathrm{Im} / \mathrm{W} \\ \hline \end{array}$		$500 \mathrm{~mA}$		700 mA		1050 mA		1400 mA		
DMS099C				$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=8.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=24.7 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=12.6 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=25.3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=18.1 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=25.8 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=28 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=26.7 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=38.1 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=27.3 \mathrm{~V} \end{aligned}$		
DMS099C27F	558922	warm white	2700	1170	134	1655	131	2220	123	3110	111	3845	101	82
DMS099C30F	558231	warm white	3000	1260	145	1780	141	2390	132	3345	119	4140	109	85
DMS099C30FB	558232	warm white	3000 (below BBL)	1200	138	1685	134	2260	125	3170	113	3935	103	85
DMS099C35F	558923	neutral white	3500	1295	149	1815	144	2440	135	3425	122	4240	111	85
DMS099C35FB	558924	neutral white	3500 (below BBL)	1220	140	1715	136	2305	127	3220	115	3995	105	85
DMS099C40F	558925	neutral white	4000	1310	151	1850	147	2480	137	3475	124	4300	113	85
DMS099C40FB	558926	neutral white	4000 (below BBL)	1235	142	1740	138	2335	129	3275	117	4050	106	85
DMS099C50F	558927	cool white	5000	1320	152	1865	148	2505	138	3505	125	4350	114	85
DMS 120C				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=11.5 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=32.9 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=16.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=33.4 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=23.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=34.1 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=37 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=35.3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=50.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=36 \mathrm{~V} \end{aligned}$		
DMS120C27F	558932	warm white	2700	1635	142	2250	135	3030	127	4225	114	5215	103	82
DMS120C30F	558234	warm white	3000	1750	152	2425	145	3260	136	4550	123	5615	111	85
DMS120C30FB	558235	warm white	3000 (below BBL)	1660	144	2300	138	3090	129	4315	117	5330	106	85
DMS120C35F	558933	neutral white	3500	1795	156	2485	149	3345	140	4660	126	5755	114	85
DMS120C35FB	558934	neutral white	3500 (below BBL)	1690	147	2335	140	3145	132	4385	119	5410	107	85
DMS120C40F	558935	neutral white	4000	1825	159	2515	151	3385	142	4730	128	5840	116	85
DMS120C40FB	558936	neutral white	4000 (below BBL)	1715	149	2375	142	3195	134	4455	120	5500	109	85
DMS120C50F	558937	cool white	5000	1840	160	2540	152	3415	143	4770	129	5890	117	85
DMS120B50F	on request	cool white	5000	1945	169	2685	161	3615	151	5045	136	6235	124	70
DMS150C				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=14.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=41.1 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline \mathrm{Pel}=20.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=41.8 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=29.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=42.7 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=46.4 \mathrm{~W} \\ & \mathrm{U}_{\text {lyp. }}=44.2 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{Pel}_{\mathrm{el}}=63 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=45 \mathrm{~V} \end{aligned}$		
DMS150C27F	558943	warm white	2700	2070	144	2870	137	3870	129	5455	118	6750	107	82
DMS150C30F	558237	warm white	3000	2230	155	3090	148	4165	139	5865	126	7270	115	85
DMS150C30FB	558238	warm white	3000 (below BBL)	2110	147	2935	140	3955	132	5570	120	6900	110	85
DMS150C35F	558944	neutral white	3500	2285	159	3170	152	4270	143	6010	130	7450	118	85
DMS 150C35FB	558945	neutral white	3500 (below BBL)	2145	149	2980	143	4020	134	5660	122	7010	111	85
DMS150C40F	558946	neutral white	4000	2315	161	3215	154	4335	145	6090	131	7560	120	85
DMS150C40FB	558947	neutral white	4000 (below BBL)	2175	151	3030	145	4085	137	5755	124	7120	113	85
DMS150C50F	558948	cool white	5000	2335	162	3240	155	4365	146	6165	133	7630	121	85
DMS150B50F	on request	cool white	5000	2475	172	3435	164	4630	155	6515	140	8070	128	70

[^10]
Constant-current System - Shop

LUGA Shop 2015 PCB - 1000 lm to 8000 lm

LUGA Shop 2015 PCB HiCRI - CRI Ra> 90

	Ref. No.		Correlated colour temperature* (K)	Typ. luminous flux and efficiency, typ. voltage (Utyp.) and power consumption (Pel) **										$\begin{aligned} & \hline \text { Typ } \\ & \mathrm{CR} \\ & \mathrm{R}_{\mathrm{a}} \\ & \hline \end{aligned}$
				$\begin{array}{ll} 350 \mathrm{~mA} \\ \mathrm{~lm} & \mathrm{Im} / \mathrm{W} \\ \hline \end{array}$		$500 \mathrm{~mA}$		700 mA		1050 mA		1400 mA		
DMS099***F				$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=8.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=24.7 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=12.6 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=25.8 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline \mathrm{Pel}=18.1 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=25.8 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=28 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=26.7 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=38.1 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=27.3 \mathrm{~V} \end{aligned}$		
DMS099S27F	558928	warm white	2700 (below BBL)	950	109	1340	106	1800	99	2520	90	3125	82	95
DMS099S30F	558929	warm white	3000 (below BBL)	1020	117	1435	114	1925	106	2700	96	3350	88	95
DMS099S35F	558930	neutral white	3500 (below BBL)	1085	125	1530	121	2055	114	2875	103	3560	93	95
DMS099S40F	558931	neutral white	4000 (below BBL)	1125	129	1585	126	2125	117	2975	106	3680	97	95
DMS120***F				$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=11.5 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=32.9 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=16.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=34.1 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=23.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=34.1 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=37 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=35.3 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & P_{\mathrm{el} .}=50.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=36 \mathrm{~V} \end{aligned}$		
DMS120S27F	558938	warm white	2700 (below BBL)	1320	115	1825	109	2455	103	3430	93	4235	84	95
DMS120S30F	558940	warm white	3000 (below BBL)	1415	123	1955	117	2630	110	3685	100	4550	90	95
DMS120S35F	558941	neutral white	3500 (below BBL)	1505	131	2080	125	2800	117	3910	106	4820	96	95
DMSI20S40F	558942	neutral white	4000 (below BBL)	1560	136	2150	129	2895	121	4040	109	5000	99	95
DMS150***F				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=14.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=41.1 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=20.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=42.7 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=29.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=42.7 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=46.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=44.2 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=63 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=45 \mathrm{~V} \end{aligned}$		
DMS150S27F	558949	warm white	2700 (below BBL)	1685	117	2325	111	3135	105	4430	95	5485	87	95
DMSI50S30F	558239	warm white	3000 (below BBL)	1800	125	2495	119	3365	113	4755	102	5885	93	95
DMS150S35F	558950	neutral white	3500 (below BBL)	1920	133	2655	127	3575	120	5045	109	6255	99	95
DMS150S40F	558951	neutral white	4000 (below BBL)	1985	138	2745	131	3705	124	5220	113	6465	103	95

[^11]
LUGA Shop 2015 PCB - Pearl White

Characteristics

- Brilliant white light
- For retail lighting, especially fashion lighting
- Similar colour impression like C-HI lamps
- Highly efficient: up to $123 \mathrm{Im} / \mathrm{W}$

LUGA Shop 2014 PCB - Pearl White - CRI Ra> 90

Type	Ref. No.	Colour	Correlated colour temperature * (K)	Typ. luminous flux and efficiency and typ. voltage (Utyp.) and power consumption (Pell **										$\begin{array}{\|l} \hline \text { Typ. } \\ \text { CRI } \\ \mathrm{R}_{\mathrm{a}} \\ \hline \end{array}$
				$\begin{aligned} & 350 \mathrm{~mA} \\ & \mathrm{Im} \\ & \hline 1 \mathrm{~m} / \mathrm{W} \\ & \hline \end{aligned}$		$\begin{array}{l\|l} \begin{array}{l} 500 \mathrm{~mA} \\ \\ \mathrm{Im} \end{array} & \mathrm{Im} / \mathrm{W} \\ \hline \end{array}$		$\begin{array}{\|l\|l} 700 \mathrm{~mA} \\ \operatorname{lm} & \operatorname{lm} / \mathrm{W} \\ \hline \end{array}$		$\begin{aligned} & 1050 \mathrm{~mA} \\ & \operatorname{lm} \\ & \operatorname{lm} \\ & \hline \mathrm{Im} / \mathrm{W} \\ & \hline \end{aligned}$		$\begin{array}{l\|l} 1400 \mathrm{~mA} \\ \operatorname{lm} & \operatorname{lm} / \mathrm{W} \\ \hline \end{array}$		
DMS099S31FP				$\begin{aligned} & \hline \mathrm{Pel}=8.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=24.7 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=12.6 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=25.3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=18.1 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=25.8 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline P_{\text {el }}=28 \mathrm{~W} \\ & U_{\text {typ. }}=26.7 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=38.1 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=27.3 \mathrm{~V} \\ & \hline \end{aligned}$		
DMS099S31FP	558233	pearl white	3100	1050	121	1475	117	1980	109	2775	99	3430	90	95
DMS120S31FP				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=11.5 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=32.9 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=16.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=33.4 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=23.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=34.1 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=37 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=35.3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=50.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=36 \mathrm{~V} \end{aligned}$		
DMS120S31FP	558236	pearl white	3100	1455	127	2005	120	2695	113	3775	102	4655	92	95
DMS150S31FP				$\begin{aligned} & \hline \mathrm{P}_{\text {el }}=14.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=41.1 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=20.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=41.8 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline \mathrm{P}_{\text {el }}=29.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=42.7 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=46.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=44.2 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=63 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=45 \mathrm{~V} \end{aligned}$		
DMS150S31FP	558240	pearl white	3100	1855	129	2575	123	3470	116	4890	105	6065	96	95

Emission data at $t_{p}=65^{\circ} \mathrm{C} \mid$ * Colour tolerance: 3 MacAdam | ** Production tolerance of luminous flux, efficiency, voltage and power consumption: $\pm 10 \%$ Min. CRI Ra: > 90

LUGA Shop 2015 PCB - FOOD

Characteristics

- Optimized for use in all retail areas - especially for fresh food (bread, fruits, vegetables, meat)

Type

[^12]
PCB Holder for LUGA Shop 2015

For DMS099* * * / DMS 120* * F / DMS 150* * *F

The combination of PCB version and holder provides
the option of simply replacing LED modules within their
holder. Simple and secure attachment is enabled with
a separate holder.

The PCB clicks into the opening on the reverse
of the holder. In doing so, care must be taken
to ensure correct polarity is maintained. The holder
with the inserted PCB is then turned around and
fixed with two screws. The holder also features
lateral connection openings into which the electrical
leads can be pushed.
Dependent on the used thermal conductive material and the power classes the expected service life times can differ from the values on the data sheet
LUGA Shop 2015 PCB.

LUGA Shop 2015 holder

For LED LUGA Shop 2015 PCB DMS 120 and DMS 150
Dimensions $(\varnothing \times H)$: $50 \times 4.2 \mathrm{~mm}$
Material: PBT, white
Fixing holes for screws M3
Hole distance: 35 mm
Unit: 500 pcs.
Type: 89720
Ref. No.: $559164 \quad \varnothing 50 \mathrm{~mm}$

LUGA C 2015-500 lm to 4000 lm

Built-in lighting modules

Due to their tiny size, the LUGA C modules are particularly suitable as a replacement for mains and low-voltage halogen lamps.
As LUGA C modules are capable of producing
lumen packages of up to 4000 lm , they can also
be used for retail lighting and in downlights.

Technical notes

Dimensions
DMC112: $13.5 \times 13.5 \times 1.7 \mathrm{~mm}$
DMC104/DMC115/
DMC118: $19 \times 19 \times 1.7 \mathrm{~mm}$
Light emitting surface (LES)
DMC112: $\varnothing 8 \mathrm{~mm}$
DMC104/DMC115: $\varnothing 11.1$ mm
DMC118: $\varnothing 13.8 \mathrm{~mm}$

DMC112C**E

DMC104C**E / DMC115C**E / DMC104D31EP / DMC115D31EP

Unit:
225 pcs. (DMC112)
175 pcs. (DMC104/DMC115/DMC118)

Typical applications

Integration in

- Reflector luminaires for replacement of

Halogen mains and low-voltage lamps

- Flat surface-mounting luminaires
- Downlights

For use in

- Residential lighting
- Furniture lighting
- Stairway and corridor illumination

DMC118C**E / DMC118D31EP

$\stackrel{\square}{\square}$
-40 to $85^{\circ} \mathrm{C}$
-40 to $80^{\circ} \mathrm{C}(\mathrm{DMC104}:>500 \mathrm{~mA})$
-40 to $75^{\circ} \mathrm{C}($ DMC 118: > 700 mA$)$
Use of external LED constant current driver
Efficiency up to $167 \mathrm{~lm} / \mathrm{W}$
Colour rendering index Ra_{a} : 880
Colour accuracy initially: 3 SDCM;
after 50,000 hrs. operating time: 4 SDCM
Lumen maintenance L90/B 10
DMC112: 53.000 hrs. (IF 150 mA$)$
DMC 104: 48.000 hrs. (IF 350 mA)
DMC115/DMC118: 50.000 hrs. (If 350 mA)

$\stackrel{\square}{\square}$

LUGA C 2015 - 500 Im to 1000 lm

Characteristics

- Optimized for lumen packages $\leq 1000 \mathrm{~lm}$
- Highly efficient: up to $134 \mathrm{Im} / \mathrm{W}$

LUGA C 2015 - CRI Ra> $\mathbf{8 0}$

Type	Ref. No.	Colour	Correlated colour temp. * (K)	$\begin{aligned} & \text { Typ. } \\ & 150 \\ & \text { Im } \end{aligned}$	flux and $1 \mathrm{~m} / \mathrm{W}$	$\begin{aligned} & 20 \mathrm{cy}, \text { ty } \\ & 200 \\ & \mathrm{~lm} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { e (Utyp.) } \\ & \operatorname{Im} / W \end{aligned}$	25er Im	$\begin{aligned} & \text { ion } \left.\left(\mathrm{P}_{\mathrm{e}}\right)\right)^{* *} \\ & 1 \mathrm{~m} / \mathrm{W} \end{aligned}$	Typ. beam angle $\left({ }^{\circ}\right)$	Typ CRI R_{a}
DMC112C**E				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=4.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=31.6 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=6.5 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=32.6 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=8.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=33.5 \mathrm{~V} \end{aligned}$			
DMC112C27E	556875	warm white	2700	545	116	685	105	805	96	120	82
DMC112C30E	556863	warm white	3000	590	126	740	114	870	104	120	85
DMC112C40E	556876	neutral white	3500	630	134	790	122	925	110	120	85

Emission data at $t_{p}=65^{\circ} \mathrm{C} \mid *$ Colour tolerance: 3 MacAdam | ** Production tolerance of luminous flux and efficiency: $\pm 15 \%$; of voltage and power consumption: $\pm 10 \%$ Min. CRI Ra: > 80 | Colour temperatures 3500 K and 5000 K on request

LUGA C 2015-500 lm to 800 lm

LUGA C 2015 - CRI $R_{a}>90$

Type
Ref. No.

LUGA C 2015-500 Im to 800 lm - Pearl White

LUGA C 2015 - CRI Ra> 90

Type	Ref. No.	Colour	Correlated colour temp. * (K)	Typ. luminous flux and efficiency, typ. voltage (Utyp.) and power consumption (Pel)**						Typ. beam angle (${ }^{\circ}$)	Typ. CRI R_{a}
				$\begin{aligned} & 150 \mathrm{~mA} \\ & \mathrm{Im} \\ & \hline \end{aligned}$	$1 \mathrm{~lm} / \mathrm{W}$	200 1 m	$1 \mathrm{Im} / \mathrm{W}$	250 1 m	$1 \mathrm{Im} / \mathrm{W}$		
DMC112S**EP				$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=4.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=31.6 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=6.5 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=32.6 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=8.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=33.5 \mathrm{~V} \end{aligned}$			
DMC112S31EP	557806	pearl white	3100	505	107	635	98	745	89	120	95

[^13]
Constant-current System - Shop

LUGA C 2015 - 1000 Im to 4000 Im

Characteristics

- Optimized for lumen packages from 1000 Im to 4000 Im
- Highly efficient: up to $167 \mathrm{~lm} / \mathrm{W}$

LUGA C 2015 - CRI Ra $\mathbf{>} 80 />65$

Type	Ref. No.	Colour	Correlated colour temp. * (K)	Typ. luminous flux and efficiency, typ. voltage (Utyp.) and power consumption (Pel) **								Typ. beam angle (${ }^{\circ}$)	Typ. CRI Ra_{a}
				$\begin{aligned} & 350 \mathrm{~mA} \\ & \mathrm{~lm} \end{aligned}$	$\operatorname{lm} / \mathrm{W}$	$\begin{aligned} & 500 \mathrm{~mA} \\ & \mathrm{~lm} \\ & \hline \end{aligned}$	$1 \mathrm{~lm} / \mathrm{W}$	$\begin{array}{\|l} 700 \mathrm{~mA} \\ \mathrm{Im} \\ \hline \end{array}$	$1 \mathrm{~m} / \mathrm{W}$	$\begin{aligned} & 1050 \\ & \mathrm{~lm} \\ & \hline \end{aligned}$	$\operatorname{lm} / \mathrm{W}$		
DMC104C**E				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=10.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=29.2 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=15.3 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=30.5 \mathrm{~V} \end{aligned}$							
DMC104C27E	556877	warm white	2700	1140	112	1465	96	-	-	-	-	120	82
DMC104C30E	556864	warm white	3000	1210	119	1555	102	-	-	-	-	120	85
DMC104C35E	on request	neutral white	3500	1265	124	1625	106	-	-	-	-	120	85
DMC104C40E	556878	neutral white	4000	1300	127	1665	109	-	-	-	-	120	85
DMC104C50E	on request	cool white	5000	1315	129	1690	110	-	-	-	-	120	85
DMC115C**E				$\begin{aligned} & \hline \mathrm{P}_{\text {el }}=11 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=31.4 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\text {el }}=16.3 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=32.6 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=23.8 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=34 \mathrm{~V} \end{aligned}$					
DMC115C27E	556879	warm white	2700	1325	120	1755	108	2205	93	-	-	120	82
DMC115C30E	556865	warm white	3000	1420	129	1875	115	2350	99	-	-	120	85
DMC115C30EB	557233	warm white	3000	1355	123	1785	110	2245	94	-	-	120	85
DMC115C35E	557187	neutral white	3500	1480	135	1950	120	2450	103	-	-	120	85
DMC115C40E	556880	neutral white	4000	1505	137	1995	122	2500	105	-	-	120	85
DMC115C50E	557183	cool white	5000	1535	140	2035	125	2555	107	-	-	120	85
DMC118C**E				$\begin{aligned} & \mathrm{P}_{\text {el }}=10.6 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=30.2 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=15.5 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=31 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=22.5 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=32.1 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=35.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=33.7 \mathrm{~V} \\ & \hline \end{aligned}$			
DMC118C27E	556881	warm white	2700	1375	130	1875	121	2460	109	3260	92	120	82
DMC118C30E	556866	warm white	3000	1455	137	1980	128	2595	115	3450	97	120	85
DMC118C30EB	557234	warm white	3000	1390	131	1905	123	2480	110	3310	94	120	85
DMC118C35E	556882	neutral white	3500	1525	144	2085	135	2735	122	3635	103	120	85
DMC118C40E	556883	neutral white	4000	1560	147	2125	137	2795	124	3710	105	120	85
DMC118C50E	556867	cool white	5000	1585	150	2160	139	2840	126	3770	106	120	85
DMC118B50E	557182	cool white	5000	1770	167	2415	156	3165	141	4295	121	120	70

Emission data at $t_{p}=\left.65^{\circ} \mathrm{C}\right|^{*}$ Colour tolerance: $3 \mathrm{MacAdam} \mid * *$ Production tolerance of luminous flux and efficiency: $\pm 15 \%$; of voltage and power consumption: $\pm 10 \%$ Min. CRI Ra: $>80 />65$

Constant-current System - Shop

LUGA C 2015

- 1000 lm to 3000 lm

LUGA C 2015 - CRI Ra> 90

Type

Emission data at $t_{p}=65^{\circ} \mathrm{C} \mid$ * Colour tolerance: 3 MacAdam | ** Production tolerance of luminous flux and efficiency: $\pm 15 \%$; of voltage and power consumption: $\pm 10 \%$ Min. CRI Ra: > 90

LUGA C 2015-1000 Im to 3000 Im
 - Pearl White

Characteristics

- Optimized for lumen packages from 1000 Im to 3000 Im
- Highly efficient: up to $114 \mathrm{~lm} / \mathrm{W}$

LUGA C 2015 Pearl White - CRI Ra> 80

Type	Ref. No.	Colour	Correlated colour temp. * (K)	Typ. luminous flux and efficiency, typ. voltage ($U_{\text {typ. }}$) and power consumption ($\mathrm{Pel}^{\text {el }}$ * *								Typ. beam angle (${ }^{\circ}$)	Typ. CRI Ra
					$1 \mathrm{~m} / \mathrm{W}$		$1 \mathrm{~m} / \mathrm{W}$		$\operatorname{lm} / \mathrm{W}$	1050	$\operatorname{lm} / \mathrm{W}$		
DMC104D31EP				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=10.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=29.2 \mathrm{~V} \end{aligned}$		$\begin{aligned} & P_{\text {el }}=15.3 \mathrm{~W} \\ & U_{\text {typ. }}=30.5 \mathrm{~V} \end{aligned}$							
DMC104C31EP	557184	pearl white	3100	1220	120	1565	102	-	-	-	-	120	85
DMC115D31EP				$\begin{aligned} & P_{\text {el }}=11 \mathrm{~W} \\ & U_{\text {typ. }}=31.4 \mathrm{~V} \end{aligned}$		$\begin{aligned} & P_{\text {el }}=16.3 \mathrm{~W} \\ & U_{\text {typ. }}=32.6 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=23.8 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=34 \mathrm{~V} \end{aligned}$					
DMC115C31EP	on request	pearl white	3100	1435	130	1895	116	2375	100	-	-	120	85
DMC118D31EP				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=10.6 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=30.2 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=15.5 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=31 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=22.5 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=32.1 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=35.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=33.7 \mathrm{~V} \end{aligned}$			
DMC118C31EP	on request	pearl white	3100	1485	140	2025	131	2650	118	3525	100	120	85

Emission data at $t_{p}=\left.65^{\circ} \mathrm{C}\right|^{*}$ Colour tolerance: 3 MacAdam | ** Production tolerance of luminous flux and efficiency: $\pm 15 \%$; of voltage and power consumption: $\pm 10 \%$ Min. CRI Ra: > 80

LUGA C 2015 Pearl White - CRI Ra> $\mathbf{>} 90$

Type	Ref. No.	Colour	Correlated colour temp.* (K)	Typ. luminous flux and efficiency, typ. voltage (Utyp.) and power consumption (Pel) ${ }^{\text {** }}$								Typ. beam angle (${ }^{\circ}$)	Typ. CRI Ra
				$\begin{aligned} & 350 \mathrm{~mA} \\ & \mathrm{~lm} \\ & \hline \end{aligned}$	$1 \mathrm{~m} / \mathrm{W}$	$\begin{aligned} & 500 \mathrm{~m} \\ & \mathrm{Im} \\ & \hline \end{aligned}$	$\operatorname{lm} / \mathrm{W}$	$\begin{aligned} & 700 \mathrm{~m} \\ & \mathrm{Im} \\ & \hline \end{aligned}$	$1 \mathrm{~lm} / \mathrm{W}$	$\begin{aligned} & 1050 \\ & \operatorname{lm} \\ & \hline \end{aligned}$	lm / W		
DMC104S31EP				$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=10.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=29.2 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=15.3 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=30.5 \mathrm{~V} \\ & \hline \end{aligned}$							
DMC104S31EP	557810	pearl white	3100	1035	101	1330	87	-	-	-	-	120	95
DMC115S31EP				$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=11 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=31.4 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=16.3 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=32.6 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=23.8 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=34 \mathrm{~V} \end{aligned}$					
DMC115S31EP	557800	pearl white	3100	1195	109	1580	97	1990	84	-	-	120	95
DMC118S31EP				$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=10.6 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=30.2 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{Pel}_{\mathrm{el}}=15.5 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=31 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=22.5 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=32.1 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=35.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=33.7 \mathrm{~V} \end{aligned}$			
DMC118S31EP	557802	pearl white	3100	1250	118	1705	110	2230	99	2970	84	120	95

Emission data at $t_{p}=65^{\circ} \mathrm{C} \mid$ * Colour tolerance: 3 MacAdam | ** Production tolerance of luminous flux and efficiency: $\pm 15 \%$; of voltage and power consumption: $\pm 10 \%$ Min. CRI Ra: > 90

LED Industrial and Hall Lighting

These LED modules are suitable for illuminating industrial, production, sports and warehouse facilities as well as for petrol stations (especially SYM II).

These modules were designed for built-in into luminaire casings. They enable a modular luminaire design.

The modules are available in four shapes $(4,16,32$ or 64 LEDs) and in three white colour tones.

Technical notes

LED built-in module for integration into luminaires 4, 16, 32 or 64 high-efficient High Power LEDs Allowed operating temperature at t_{c} point

$$
\text { at } \mathrm{IF}=700 \mathrm{~mA}:-20 \text { to } 85^{\circ} \mathrm{C}
$$

Use of external LED constant current driver
Design for optimum thermal management
Efficiency up to $136 \mathrm{~lm} / \mathrm{W}$
Lumen maintenance L70/B 10 :
52,000 hrs. (If 1050 mA) at $t_{p} 60^{\circ} \mathrm{C}$
ESD protection class 2
Surge protection: 4 kV

Typical applications

- Integration in outdoor luminaires
- Indoor lighting
- Industrial lighting for:
- Production halls
- Warehouses
- Petrol station lighting
- Lighting for sports facilities

LED Industrial and Hall Lighting

Optical characteristics

at $t_{p}=60^{\circ} \mathrm{C}$

Type IP20		linear		Colour	Correlated colour temperature* K	Luminous and po 400 mA min.	Luminous flux (Im) and typical voltage (Utyp.) and power consumption $\left(\mathrm{Pel}^{*}\right)^{* *}$	m) and typ sumption 700 mA min.	ypical vo $\left(P_{e} \mid\right)^{* *}$ typ.	$\begin{aligned} & \text { Itage }\left(U_{\text {tyI }}\right. \\ & 1050 \mathrm{~m} \\ & \text { min. } \end{aligned}$				$\begin{aligned} & \text { CRI*** } \\ & R_{a} \\ & \hline \end{aligned}$
4 LEDs						$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=4.5 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=11.3 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{Pel}_{\mathrm{el}}=8.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=12 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline \text { Pel }=13.7 \mathrm{~W} \\ & U_{\text {typ. }}=13 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=19.3 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=13.8 \mathrm{~V} \\ & \hline \end{aligned}$		
WU-M-444/B-..	-	-	WW	warm white	3000-130/+220	500	565	825	920	1125	1240	1425	1575	≥ 70
WU-M-444/B-..	-	-	NW	neutral white	4000-290/+260	500	565	825	920	1125	1240	1425	1575	≥ 70
WU-M-444/B-.	-	-	CW	cool white	5000-255/+310	550	615	890	975	1225	1350	1550	1700	≥ 65
16 LEDs						$\begin{aligned} & \mathrm{Pel}_{\mathrm{el}}=18 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=45 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=33.6 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=48 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=54.6 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=52 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=77 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=55 \mathrm{~V} \end{aligned}$		
WU-M-475/16-..	WU-M-425/B-..	WU-M-438/B-..	WW	warm white	3000-130/+220	2000	2250	3300	3600	4500	4950	5700	6300	≥ 70
WU-M-475/16-..	WU-M-425/B-..	WU-M-438/B-..	NW	neutral white	4000-290/+260	2000	2250	3300	3600	4500	4950	5700	6300	≥ 70
WU-M-475/16-..	WU-M-425/B-..	WU-M-438/B-..	CW	cool white	5000-255/+310	2200	2450	3550	3900	4900	5400	6200	6800	≥ 65
WU-M-488	-	-	WW	warm white	3000-130/+220	2000	2250	3300	3600	4500	4950	5700	6300	≥ 70
WU-M-488	-	-	NW	neutral white	4000-290/+260	2000	2250	3300	3600	4500	4950	5700	6300	≥ 70
WU-M-488	-	-	CW	cool white	5000-255/+310	2200	2450	3550	3900	4900	5400	6200	6800	≥ 65
32 LEDs						$\begin{aligned} & \mathrm{Pel}_{\mathrm{el}}=36 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=90 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=67.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=96 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline \mathrm{Pel}_{\mathrm{el}}=109.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=104 \mathrm{~V} \end{aligned}$		-		
-	-	WU-M-496-	WW	warm white	3000-130/+220	4000	4500	6600	7200	9000	9900	-	-	≥ 70
-	-	WU-M-496-	NW	neutral white	4000-290/+260	4000	4500	6600	7200	9000	9900	-	-	≥ 70
-	-	WU-M-496-	CW	cool white	5000-255/+310	4400	4900	7100	7800	9800	10800	-	-	≥ 65
64 LEDs						$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=72 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=180 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=134.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=192 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=218.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=208 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=308 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=220 \mathrm{~V} \\ & \hline \end{aligned}$		
WU-M-475/64-..	-	-	WW	warm white	3000-130/+220	8000	9000	13200	14400	18000	19800	22800	25200	≥ 70
WU-M-475/64-.	-	-	NW	neutral white	4000-290/+260	8000	9000	13200	14400	18000	19800	22800	$25200 \geq$	≥ 70
WU-M-475/64-..	-	-	CW	cool white	5000-255/+310	8800	9800	14200	15600	19600	21600	24800	27200	≥ 65

[^14]Constant-current System - Industrial and Hall Lighting

LED Industrial Light SYM I - IP2O

Technical notes

Dimensions (incl. optics) $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$
4 LEDs: $60 \times 65 \times 12 \mathrm{~mm}$
16 LEDs: $120 \times 120 \times 12 \mathrm{~mm}$
64 LEDs: $240 \times 240 \times 12 \mathrm{~mm}$
Degree of protection: IP20/IK05
Push-in terminals (WAGO series 2060)
Optics for hall lighting
Optimum illumination - installation ratio: 1:1 (height to distance) on the $0-180^{\circ}$ layer (lengthwise) or 8:5 (height to distance) on the
90-270 layer (crosswise).

Type	Ref. No.	Number of LEDs
WU-M-444/B-WW	$\mathbf{5 5 6 2 3 5}$	4
WU-M-444/B-NW	$\mathbf{5 5 3 9 3 3}$	4
WU-M-444/B-CW	$\mathbf{5 5 3 9 3 2}$	4
WU-M-475/16-WW	$\mathbf{5 5 6 2 3 6}$	16
WU-M-475/16-NW	$\mathbf{5 5 3 9 1 5}$	16
WU-M-475/16-CW	$\mathbf{5 5 3 9 1 4}$	16
WU-M-475/64-WW	$\mathbf{5 5 6 2 3 7}$	64
WU-M-475/64-NW	$\mathbf{5 5 4 8 0 6}$	64
WU-M-475/64-CW	$\mathbf{5 5 4 8 0 1}$	64

WU-M-444/B

WU-M-475/16

WU-M-475/64

LED Industrial Light Linear
 SYM I - IP20

Technical notes

Dimensions (incl. optics) $\mathrm{LxW} \times \mathrm{H}$
16 LEDs: $60 \times 240 \times 12 \mathrm{~mm}$
Degree of protection: IP20/IK05
Push-in terminals (WAGO series 2060)
Optics for hall lighting
Optimum illumination - installation ratio:
1:1 (height to distance) on the $0-180^{\circ}$ layer
(lengthwise) or 8:5 (height to distance) on the
90-270 layer (crosswise).

Type	Ref. No.	Number of LEDs
WU-M-488-WW	on request	16
WU-M-488-NW	on request	16
WU-M-488-CW	$\mathbf{5 5 6 2 9 7}$	16

WU-M-488 SYM I

Constant-current System - Industrial and Hall Lighting

LED Industrial Light SYM I - Water
 Protected

Technical notes

Dimensions (incl. optics) $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$
16 LEDs, square: $120 \times 120 \times 18.75 \mathrm{~mm}$
16 LEDs, linear: $240 \times 60 \times 18.75 \mathrm{~mm}$
Encapsulated for outdoor applications with
degree of protection: IP66/IK05
Pre-assembled leads:
2 leads: + (red); - (blue)
for luminaires of protection class II, length: 500 mm
Version with 3 leads (incl. PE lead) on request
Optics for hall lighting
Optimum illumination - installation ratio: 1:1 (height to distance) on the $0-180^{\circ}$ layer (lengthwise) or 8:5 (height to distance) on the 90-270ㅇ layer (crosswise).

Type	Shape	Ref. No.	Number of LEDs
WU-M-425/B-WW	square	$\mathbf{5 5 4 7 8 7}$	16
WU-M-425/B-NW	square	$\mathbf{5 5 4 7 8 2}$	16
WU-M-425/B-CW	square	$\mathbf{5 5 3 0 6 8}$	16
WU-M-438/B-WW	linear	$\mathbf{5 5 6 7 0 4}$	16
WU-M-438/B-NW	linear	$\mathbf{5 5 6 6 9 7}$	16
WU-M-438/B-CW	linear	$\mathbf{5 5 4 7 9 5}$	16

LED LightEngine SYM I - IP66

Technical notes

Dimensions (incl. optics) $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ 32 LEDs: $240 \times 120 \times 62 \mathrm{~mm}$
Encapsulated for outdoor applications with
degree of protection: IP66/IK05
Pre-assembled leads:
2 leads: + (red); - (blue)
for luminaires of protection class II, length: 500 mm
Optics for hall lighting
Optimum illumination - installation ratio:
1:1 (height to distance) on the $0-180^{\circ}$ layer
(lengthwise) or 8:5 (height to distance) on the 90-270 ${ }^{\circ}$ layer (crosswise).

Type	Ref. No.	Number of LEDs
WU-M-496-WW-R70	$\mathbf{5 5 8 1 7 8}$	32
WU-M-496-NW-R70	$\mathbf{5 5 8 1 7 7}$	32
WU-M-496-CW-RNN	$\mathbf{5 5 8 1 7 6}$	32

WU-M-496 SYM I

Constant-current System - Industrial and Hall Lighting

LED Industrial Light SYM II - IP20

Technical notes

Dimensions (incl. optics) $\mathrm{L} \times W \times \mathrm{H}$
4 LEDs: $60 \times 65 \times 6.2 \mathrm{~mm}$
16 LEDs: $120 \times 120 \times 6.2 \mathrm{~mm}$
64 LEDs: $240 \times 240 \times 6.2 \mathrm{~mm}$
Degree of protection: IP20/IKO5*
Push-in terminals (WAGO series 2060)
Optics for hall lighting
Optimum illumination - installation ratio:
1:2 (height to distance)

Type	Ref. No.	Number of LEDs
WU-M-444/B-WW	$\mathbf{5 5 6 2 3 8}$	4
WU-M-444/B-NW	$\mathbf{5 5 3 9 3 6}$	4
WU-M-444/B-CW	$\mathbf{5 5 3 9 3 5}$	4
WU-M-475/16-WW	$\mathbf{5 5 6 2 3 9}$	16
WU-M-475/16-NW	$\mathbf{5 5 3 9 1 8}$	16
WU-M-475/16-CW	$\mathbf{5 5 3 9 1 7}$	16
WU-M-475/64-WW	$\mathbf{5 5 6 2 4 0}$	64
WU-M-475/64-NW	$\mathbf{5 5 4 8 0 7}$	64
WU-M-475/64-CW	$\mathbf{5 5 4 8 0 2}$	64
* \quad I 16		

* Degree of protection IK08 also possible by use of silicone
optics; Ref. No. on request

WU-M-444/B
WU-M-475/16
WU-M-475/64

LED Industrial Light Linear SYM II - IP20

Technical notes

Dimensions (incl. optics) $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$
16 LEDs: $60 \times 240 \times 6,2 \mathrm{~mm}$
Degree of protection: IP20/IK05*

Push-in terminals (WAGO series 2060)
Optics for hall lighting
Optimum illumination - installation ratio: 1:2 (height to distance)

Type	Ref. No.	Number of LEDs
WU-M-488-WW	on request	16
WU-M-488-NW	on request	16
WU-M-488-CW	$\mathbf{5 5 6 2 9 8}$	16
* Degree of protection IK08 also possible by use of silicone		

WU-M-488 SYM II

Constant-current System - Industrial and Hall Lighting

LED Industrial Light SYM II - Water

Protected

Technical notes

Dimensions (incl. optics) $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$
16 LEDs, square: $120 \times 120 \times 14 \mathrm{~mm}$
16 LEDs, linear: $240 \times 60 \times 14 \mathrm{~mm}$
Encapsulated for outdoor applications with
degree of protection: IP66/IK05*
Pre-assembled leads:
2 leads: + (red); - (blue)
for luminaires of protection class II, length: 500 mm
Version with 3 leads (incl. PE lead) on request
Optics for hall lighting

Optimum illumination - installation ratio:
1:2 (height to distance)

Type	Shape	Ref. No.	Number of LEDs
WU-M-425/B-WW	square	$\mathbf{5 5 4 7 8 8}$	16
WU-M-425/B-NW	square	$\mathbf{5 5 4 7 8 3}$	16
WU-M-425/B-CW	square	$\mathbf{5 5 3 0 6 9}$	16
WU-M-438/B-WW	linear	$\mathbf{5 5 6 7 0 5}$	16
WU-M-438/B-NW	linear	$\mathbf{5 5 6 6 9 8}$	16
WU-M-438/B-CW	linear	$\mathbf{5 5 3 6 1 2}$	16
*			

* Degree of protection IK08 also possible by use of silicone optics; Ref. No. on request

WU-M-425/B

LED LightEngine SYM II - IP66

Technical notes

Dimensions (incl. optics) $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$
32 LEDs: $240 \times 120 \times 54,6 \mathrm{~mm}$
Encapsulated for outdoor applications with
degree of protection: IP66/IK05*
Pre-assembled leads:
2 leads: + (red); - (blue)
for luminaires of protection class II, length: 500 mm
Optics for hall lighting
Optimum illumination - installation ratio:
1:2 (height to distance)

Type	Ref. No.	Number of LEDs
WU-M-496-WW-R70	$\mathbf{5 5 8 1 8 1}$	32
WU-M-496-NW-R70	$\mathbf{5 5 8 1 8 0}$	32
WU-M-496-CW-RNN	$\mathbf{5 5 8 1 7 9}$	32
*		

* Degree of protection IP67/IK08 also possible by use of silicone optics; Ref. No. on request

WU-M-496 SYM II

LED Linear Allround Industrial and Hall Lighting

These LED modules are suitable for illuminating industrial, production, sports and warehouse facilifies as well as for petrol stations (especially SYM II).

These Linear Allround modules were designed for built-in into luminaire casings. They enable an easy modular luminaire design with flexibility in system design.

The modules are available in three shapes $(4,8$, or 16 LEDs) and in three white colour tones.

Technical notes

LED built-in module for integration into luminaires
4,8 or 16 high-efficient High Power LEDs
Allowed operating temperature at t_{c} point

$$
\text { at } I_{\mathrm{F}}=700 \mathrm{~mA}:-20 \text { to } 85^{\circ} \mathrm{C}
$$

Use of external LED constant current driver
Design for optimum thermal management
Efficiency up to $136 \mathrm{~lm} / \mathrm{W}$
Lumen maintenance L70/B 10:
52,000 hrs. (IF 1050 mA) at $\mathrm{t}_{\mathrm{p}:} 60^{\circ} \mathrm{C}$

Typical applications

- Integration in outdoor luminaires
- Indoor lighting
- Industrial lighting for:
- Production halls
- Warehouses
- Petrol station lighting
- Lighting for sports facilities

ESD protection class 2
Surge protection: 4 kV

Optical characteristics

at $t_{p}=60^{\circ} \mathrm{C}$

Type

[^15]
Constant-current System - Industrial and Hall Lighting

SYM I Linear Allround

Technical notes

Dimensions (incl. optics) $\mathrm{L} \times W \times \mathrm{H}$
4 LEDs: $50 \times 62,3 \times 12 \mathrm{~mm}$
8 LEDs: $50 \times 113,2 \times 12 \mathrm{~mm}$
16 LEDs: $50 \times 215 \times 12 \mathrm{~mm}$
Degree of protection: IP20/IK05
Push-in terminals (WAGO series 2060)
Optics for hall lighting
Optimum illumination - installation ratio:
1:1 (height to distance) on the $0-180^{\circ}$ layer
(lengthwise) or 8:5 (height to distance) on the
90-270 layer (crosswise).

Type	Ref. No.	Number of LEDs
WU-M-479/4-WW	on request	4
WU-M-479/4-NW	on request	4
WU-M-479/4-CW	on request	4
WU-M-479/8-WW	$\mathbf{5 5 6 2 6 7}$	8
WU-M-479/8-NW	$\mathbf{5 5 6 2 6 9}$	8
WU-M-479/8-CW	$\mathbf{5 5 6 2 7 0}$	8
WU-M-479/16-WW	$\mathbf{5 5 6 2 6 4}$	16
WU-M-479/16-NW	$\mathbf{5 5 5 3 9 9}$	16
WU-M-479/16-CW	$\mathbf{5 5 6 2 6 6}$	16

WU-M-479/4

WU-M-479/8

WU-M-479/16

Constant-current System - Industrial and Hall Lighting

SYM II Linear Allround

Technical notes

Dimensions (incl. optics) $\mathrm{L} \times W \times \mathrm{H}$ 4 LEDs: $50 \times 62,3 \times 12 \mathrm{~mm}$ 8 LEDs: $50 \times 113,2 \times 12 \mathrm{~mm}$
16 LEDs: $50 \times 215 \times 12 \mathrm{~mm}$
Degree of protection: IP20/IK05*
Push-in terminals (WAGO series 2060)
Optics for hall lighting
Optimum illumination - installation ratio:
1:2 (height to distance)

Type	Ref. No.	Number of LEDs
WU-M-479/4-WW	on request	4
WU-M-479/4-NW	on request	4
WU-M-479/4-CW	on request	4
WU-M-479/8-WW	$\mathbf{5 5 6 2 7 4}$	8
WU-M-479/8-NW	$\mathbf{5 5 6 2 7 7}$	8
WU-M-479/8-CW	$\mathbf{5 5 6 2 7 8}$	8
WU-M-479/16-WW	$\mathbf{5 5 6 2 7 1}$	16
WU-M-479/16-NW	$\mathbf{5 5 5 4 7 9}$	16
WU-M-479/16-CW	$\mathbf{5 5 6 2 7 3}$	16

WU-M-479/4

WU-M-479/8

WU-M-479/16

Industrial FlatEmitter SMD

Technical notes

LED built-in module for integration into luminaires
Push-in terminals (WAGO series 2060)
LEDs on the module are serial connected
Reverse polarity protection
up to 70 V at WU-M-452-12/B
up to 100 V at WU-M-452-18/B
up to 450 V at WU-M-433-xx/B
Dimensions (incl. optics) $\mathrm{L} \times W \times \mathrm{H}$
$73.5 \times 34 \times 6 \mathrm{~mm}$ at WU-M-452-12/B
$86 \times 36.5 \times 6 \mathrm{~mm}$ at WU-M-452-18/B
$108 \times 44 \times 6 \mathrm{~mm}$ at WU-M-433-xx/B
ESD protection class 1
Surge protection: 3 kV
NTC-resistor (type: NCP 18XH 103J03RB) for external driver feedback of module temperature

WU-M-452-xx/B: optional
WU-M-433-xx/B: type NCP $18 \times H$ 103JO3RB

Type	Ref. No.	Number of LEDs pcs.	Colour	Correlated colour temperature (K)					Typ CRI Ra
LED modules with 12 LEDs					$\mathrm{P}_{\mathrm{el}}=13.8 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=34.4 \mathrm{~V}$		$\mathrm{P}_{\text {el }}=25.3 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=36.2 \mathrm{~V}$		
WU-M-452-12/B-WW	554820	12	warm white	3000-130/+220	1610	117	2565	101	> 80
WU-M-452-12/B-NW	556214	12	neutral white	4000-300/+260	1740	126	2780	110	>80
WU-M-452-12/B-CW	556215	12	cool white	5000-255/+310	1780	129	2840	112	> 80
LED modules with 18 LEDs					$\mathrm{P}_{\text {el }}=20.5 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=51.3 \mathrm{~V}$		$\mathrm{P}_{\text {el }}=37.8 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=54 \mathrm{~V}$		
WU-M-452-18/B-WW	554822	18	warm white	3000-130/+220	2410	118	3845	102	>80
WU-M-452-18/B-NW	556216	18	neutral white	4000-300/+260	2610	127	4165	110	> 80
WU-M-452-18/B-CW	555786	18	cool white	5000-255/+310	2670	130	4260	113	> 80
LED modules with 27 LEDs					$\mathrm{P}_{\text {el }}=30.9 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=77.2 \mathrm{~V}$		$\mathrm{P}_{\mathrm{el}}=56.5 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=80.7 \mathrm{~V}$		
WU-M-433-27/B-WW	554816	27	warm white	3000-130/+220	3510	114	5595	99	> 80
WU-M-433-27/B-NW	556217	27	neutral white	4000-300/+260	3800	123	6060	107	> 80
WU-M-433-27/B-CW	556218	27	cool white	5000-255/+310	3885	126	6200	110	> 80
LED modules with 42 LEDs					$\mathrm{Pel}_{\text {el }}=48 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=120 \mathrm{~V}$		$\mathrm{P}_{\text {el }}=87.7 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=125.3 \mathrm{~V}$		
WU-M-433-42/B-WW	554818	42	warm white	3000-130/+220	5455	114	8700	99	>80
WU-M-433-42/B-NW	556219	42	neutral white	4000-300/+260	5910	123	9430	107	> 80
WU-M-433-42/B-CW	556220	42	cool white	5000-255/+310	6040	126	9640	110	> 80

[^16]
LUGA Industrial 2014 10,000 lm

Built-in lighting modules

These LED modules are suitable for use both in street lighting as well as high-bay and industrial lighting.

Technical notes

Dimensions ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$): $64 \times 70 \times 8.7 \mathrm{~mm}$
Push-in terminals (WAGO series 2060)
LED module is operated at high voltage (up to 140 V).
Safety must be considered acc. EN 60598
Allowed operating temperature at t_{c} point:

$$
-40 \text { to } 85^{\circ} \mathrm{C}
$$

Efficiency up to $150 \mathrm{~lm} / \mathrm{W}$

Colour accuracy initially: 3 SDCM;

$$
\text { after 50,000 hrs. operating time: } 4 \text { SDCM }
$$

NTC-resistor (type: NCP 18XH 103J03RB) for
external driver feedback of module temperature
Lumen maintenance L90/B 10 :
45,000 hrs. (If 700 mA)
Unit: 12 pcs.

Typical applications

- Integration in outdoor luminaires
- Indoor lighting
- Industrial lighting for:
- Production halls
- Warehouses
- Petrol station lighting
- Lighting for sports facilities

Type	Ref. No.	Colour	Correlated colour temperature * (K)									Typ. beam angle (${ }^{\circ}$)	Typ CRI Ra
				$\begin{array}{l\|l} 350 \mathrm{~mA} \\ \mathrm{Im} & \mathrm{Im} / \mathrm{W} \\ \hline \end{array}$					lm / W	$\left.\begin{aligned} & 1050 \mathrm{~mA} \\ & \operatorname{lm} \end{aligned} \right\rvert\, \mathrm{lm} / \mathrm{W}$			
				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=37.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=108.4 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\text {el }}=55.1 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=110.3 \mathrm{~V} \end{aligned}$				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=124.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=118.5 \mathrm{~V} \end{aligned}$			
WU-M-467-830	552167	warm white	3000	5255	139	7000	127	9250	116	12800	103	120	85
WU-M-467-840	552168	neutral white	4000	5600	148	7450	135	9900	125	13600	109	120	85
WU-M-467-850	552169	cool white	5000	5675	150	7550	137	10050	127	13800	111	120	85

Emission data at $t_{p}=65^{\circ} \mathrm{C}$ | * Colour tolerance: 3 MacAdam | ** Production tolerance of luminous flux, efficiency, voltage and power consumption: $\pm 10 \%$ Min. CRI Ra: > 80 | Suitable thermal tapes for these LED modules see page 91.

LUGA C 2015 4000 lm to 15,000 lm

Built-in lighting modules

LUGA C modules with lumen values ranging from 4000 to 15,000 Im are especially designed as built-in module for industrial and outdoor lighting.

The wide range of variants (CRI 70/80) make
them suitable for indoor as well as for street light
applications.

Technical notes

Dimensions
DMC11C***E / DMC16C***E: $28 \times 28 \times 1.7 \mathrm{~mm}$ DMC17Q***E: $38 \times 38 \times 1.7 \mathrm{~mm}$
Light emitting surface (LES)
DMC11C***E/DMC16C***E: $\varnothing 22 \mathrm{~mm}$
DMC17Q***E: $\varnothing 33 \mathrm{~mm}$
Allowed operating temperature at tc point:
-40 to $85^{\circ} \mathrm{C}$
-40 to $80^{\circ} \mathrm{C}$ (DMC11C: $>1400 \mathrm{~mA}$ and DMC17Q: > 1700 mA)
-40 to $75^{\circ} \mathrm{C}($ DMC16C: $>1400 \mathrm{~mA})$
Use of external LED constant current driver
Efficiency up to $167 \mathrm{~lm} / \mathrm{W}$
Colour rendering index $\mathrm{Ra}_{\mathrm{a}}:>80 />65$
Colour accuracy initially: 3 SDCM;
after 50,000 hrs. operating time: 4 SDCM
Lumen maintenance L90/B 10
DMC11C: 45,000 hrs. (IF 1050 mA)
DMC16C: 42,000 hrs. (IF 1050 mA)
DMC17Q: 59,000 hrs. (If 1050 mA$)$ Unit:

100 pcs. (DMC11C/DMC16C)
75 pcs. (DMC17Q)

Typical applications

Integration in

- Reflector luminaires
- Flat surface-mounting luminaires
- Downlights
- Indoor and hall lighting
- Industrial lighting for:
- Production halls
- Warehouses
- Petrol station lighting
- Lighting for sports facilities

Constant-current System - Industrial, Hall, Street and Outoor Lighting

LUGA C 2015-4000 lm to 15,000 lm

Type	Ref. No.	Colour	Correlated colour temp.* (K)	Typ. luminous flux and efficiency, typ. voltage (tryp. $^{\text {I }}$) and power consumption (Pel) **								Typ. beam angle	$\begin{aligned} & \text { Typ. } \\ & \text { CRI } \\ & \mathrm{R}_{\mathrm{a}} \\ & \hline \end{aligned}$
				$\begin{aligned} & 1050 \mathrm{n} \\ & \mathrm{~lm} \\ & \hline \end{aligned}$	$1 \mathrm{~lm} / \mathrm{W}$	$\begin{aligned} & 1400 \mathrm{~mA} \\ & \mathrm{Im} \\ & \hline \end{aligned}$	$1 \mathrm{~lm} / \mathrm{W}$		$1 \mathrm{~lm} / \mathrm{W}$	$\begin{aligned} & 2100 \mathrm{~m} \\ & \mathrm{~lm} \\ & \hline \end{aligned}$	$1 \mathrm{~lm} / \mathrm{W}$		
DMC11C***E				$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=33.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=32.1 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=46.3 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=33.1 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=57.8 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=34 \mathrm{~V} \end{aligned}$					
DMC11CC27E	557642	warm white	2700	3900	116	4815	104	5425	94	-	-	120	82
DMC11CC30E	556884	warm white	3000	4155	123	5125	111	5775	100	-	-	120	85
DMC11CC35E	on request	neutral white	3500	4350	129	5380	116	6060	105	-	-	120	85
DMC11CC40E	556869	neutral white	4000	4465	132	5515	119	6210	107	-	-	120	85
DMC11CB40E	557239	neutral white	4000	4755	141	5870	127	6625	115	-	-	120	70
DMC11CC50E	556870	cool white	5000	4515	134	5590	121	6290	109	-	-	120	85
DMC11CB50E	557186	cool white	5000	5065	150	6270	135	7045	122	-	-	120	70
DMC16C***E				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=48.6 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=46.3 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=66.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=47.8 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=83.1 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=48.9 \mathrm{~V} \end{aligned}$					
DMC16CC30E	556885	warm white	3000	5810	120	7135	107	8030	97	-	-	120	85
DMC16CC40E	556871	neutral white	4000	6215	128	7635	114	8590	103	-	-	120	85
DMC16CB40E	557240	neutral white	4000	6630	136	8160	122	9175	110	-	-	120	70
DMC16CC50E	556872	cool white	5000	6295	130	7750	116	8695	105	-	-	120	85
DMC16CB50E	557081	cool white	5000	7110	146	8735	131	9825	118	-	-	120	70
DMC17Q**E				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=49.1 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=46.8 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=66.8 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=47.7 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=82.6 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=48.6 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=104 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=49.5 \mathrm{~V} \\ & \hline \end{aligned}$			
DMC17QC30E	556886	warm white	3000	7035	143	8945	134	10420	126	12085	116	120	85
DMCI7QC40E	556873	neutral white	4000	7255	148	9225	138	10740	130	12465	120	120	85
DMC17QB40E	557241	neutral white	4000	7695	157	9795	147	11405	138	13230	127	120	70
DMC17QC50E	556874	cool white	5000	7395	151	9405	141	10955	133	12690	122	120	85
DMC17QB50E	557082	cool white	5000	8190	167	10405	156	12120	147	14075	135	120	70

Emission data at $t_{p}=65^{\circ} \mathrm{C} \mid$ * Colour tolerance: 3 MacAdam | ** Production tolerance of luminous flux and efficiency: $\pm 15 \%$;
of voltage and power consumption: $\pm 10 \%$ | Min. CRI Ra: > 80 / > 65

Optics for Street Lighting

COB silicone optics M-Class (M1)

M-Class silicone optics especially designed and
optimized for the use of COB modules with LES
sizes up to 23 mm . (e.g. LUGA C, DMC11C***E
and DMC 16C***E)
Material: silicone
Optical efficiency: 93\%
Self sealing ability (IP65)
Optimum illumination - installation ratio:
4:1 (pole distance to pole height)
$\begin{array}{ll}\text { Ref. No.: } \mathbf{5 5 9 0 4 2} & \text { optics } \\ \text { Ref. No.: } \mathbf{5 5 8 6 0 7} & \text { support }\end{array}$
$1(\mathrm{~cd} / \mathrm{klm})$

LED Street and Outdoor Lighting -M-Class, S-Class,
 Area

These LED modules are suitable for standardcompliant street lighting, paths and squares in accordance with EN 13201.

These modules were designed for built-in into luminaire casings. They enable a modular luminaire design.

The VS ECXd 700/150 W LED driver enables power reduction via phase inversion.

The modules are available in four shapes $(4,16,32$ or 64 LEDs) and in three white colour tones.

Technical notes

LED built-in module for integration into luminaires
4, 16, 32 or 64 high-efficient High Power LEDs
Allowed operating temperature at t_{c} point

$$
\text { at } I_{F}=700 \mathrm{~mA}:-20 \text { to } 85^{\circ} \mathrm{C}
$$

Use of external LED constant current driver
Design for optimum thermal management
Efficiency up to $136 \mathrm{~lm} / \mathrm{W}$
Colour rendering index Ra_{a} : 70 or >80
Lumen maintenance L70/B 10 :
52,000 hrs. (IF 1050 mA) at $t_{p} 60^{\circ} \mathrm{C}$
Surge protection: 4 kV
ESD protection class 2

Typical Applications

- Integration in luminaires
- Streetlighting for ME- and S-classes (acc. to EN 13201)
- Illumination of public places

LED Street and Outdoor Lighting -M-Class, S-Class, Area

Optical Characteristics

at $t_{p}=60^{\circ} \mathrm{C}$

				Colour	Correlated colour temperature* K									CRI***R_{a}
IP20	IP66 (IP67) square	linear				$\begin{aligned} & 400 \mathrm{~mA} \\ & \mathrm{~min} . \\ & \hline \end{aligned}$	typ.	$\begin{aligned} & 700 \mathrm{~mA} \\ & \mathrm{~min} . \end{aligned}$	typ.	$\begin{aligned} & 1050 \mathrm{~m} \\ & \mathrm{~min} . \end{aligned}$				
4 LEDs						$\begin{aligned} & P_{\text {el }}=4.5 \mathrm{~W} \\ & U_{\text {typ. }}=11.3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & P_{\text {el }}=8.4 \mathrm{~W} \\ & U_{\text {typ. }}=12 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=13.7 \mathrm{~W} \\ & U_{\text {typ. }}=13 \mathrm{~V} \end{aligned}$		$\begin{aligned} & P_{\text {el }}=19.3 \mathrm{~W} \\ & U_{\text {typ. }}=13.8 \mathrm{~V} \end{aligned}$		
WU-M-444/B-..	-	-	WW	warm white	$3000-130 /+220$	500	565	825	920	1125	1240	1425	1575	≥ 70
WU-M-444/B-..	-	-	NW	neutral white	4000-290/+260	500	565	825	920	1125	1240	1425	1575	≥ 70
WU-M-444/B-..	-	-	CW	cool white	5000-255/+310	550	615	890	975	1225	1350	1550	1700	≥ 65
16 LEDs						$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=18 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=45 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=33.6 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=48 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=54.6 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=52 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=77 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=55 \mathrm{~V} \end{aligned}$		
WU-M-475/16-..	WU-M-425/B-..	WU-M-438/B-..	WW	warm white	3000-130/+220	2000	2250	3300	3600	4500	4950	5700	6300	≥ 70
WU-M-475/16-..	WU-M-425/B-..	WU-M-438/B-..	NW	neutral white	4000-290/+260	2000	2250	3300	3600	4500	4950	5700	6300	≥ 70
WU-M-475/16-..	WU-M-425/B-..	WU-M-438/B-..	CW	cool white	5000-255/+310	2200	2450	3550	3900	4900	5400	6200	6800	≥ 65
WU-M-488	-	-	WW	warm white	3000-130/+220	2000	2250	3300	3600	4500	4950	5700	6300	≥ 70
WU-M-488	-	-	NW	neutral white	4000-290/+260	2000	2250	3300	3600	4500	4950	5700	6300	≥ 70
WU-M-488	-	-	CW	cool white	5000-255/+310	2200	2450	3550	3900	4900	5400	6200	6800	≥ 65
32 LEDs						$\begin{aligned} & P_{\text {el }}=36 \mathrm{~W} \\ & U_{\text {typ. }}=90 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=67.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=96 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=109.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=104 \mathrm{~V} \\ & \hline \end{aligned}$		$\underline{-}$		
-	-	WU-M-496-	WW	warm white	$3000-130 /+220$	4000	4500	6600	7200	9000	9900	-	-	≥ 70
-	-	WU-M-496-	NW	neutral white	4000-290/+260	4000	4500	6600	7200	9000	9900	-	-	≥ 70
-	-	WU-M-496-	CW	cool white	5000-255/+310	4400	4900	7100	7800	9800	10800	-	-	≥ 65
64 LEDs						$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=72 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=180 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=134.4 \mathrm{~W} \\ & U_{\text {typ. }}=192 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=218.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=208 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=308 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=220 \mathrm{~V} \\ & \hline \end{aligned}$		
WU-M-475/64-..	-	-	WW	warm white	3000-130/+220	8000	9000	13200	14400	18000	19800	22800	25200	≥ 70
WU-M-475/64-..	-	-	NW	neutral white	4000-290/+260	8000	9000	13200	14400	18000	19800	22800	25200	≥ 70
WU-M-475/64-..	-	-	CW	cool white	5000-255/+310	8800	9800	14200	15600	19600	21600	24800	27200	≥ 65

[^17]
Constant-current System - Street and Outdoor Lighting

LED Roadway Light M-Class - IP20

Technical notes

Dimensions (incl. optics) $\mathrm{LxW} \times \mathrm{H}$
4 LEDs: $60 \times 65 \times 10 \mathrm{~mm}$
16 LEDs: $120 \times 120 \times 10 \mathrm{~mm}$
64 LEDs: $240 \times 240 \times 10 \mathrm{~mm}$
Degree of protection: IP20/IKO5*
Push-in terminals (WAGO series 2060)
Optics for illumination of streets with
M-Class (acc. to EN 13201)
Optimum illumination - installation ratio: 4.5:1 (distance between luminaire poles
to the height of the luminaire pole)

Type	Ref. No.	Number of LEDs
WU-M-444/B-WW-R70	$\mathbf{5 5 4 9 0 1}$	4
WU-M-444/B-NW	$\mathbf{5 5 3 9 2 7}$	4
WU-M-444/B-CW	$\mathbf{5 5 3 9 2 6}$	4
WU-M-475/16-WW-R70	$\mathbf{5 5 6 2 2 7}$	16
WU-M-475/16-NW	$\mathbf{5 5 3 9 0 8}$	16
WU-M-475/16-CW	$\mathbf{5 5 3 9 0 7}$	16
WU-M-475/64-WW-R70	$\mathbf{5 5 6 2 2 8}$	64
WU-M-475/64-NW	$\mathbf{5 5 4 8 0 4}$	64
WU-M-475/64-CW	$\mathbf{5 5 4 0 2 2}$	64

* Degree of protection IK08 also possible by use of silicone optics; Ref. No. on request

WU-M-444/B

WU-M-475/16

$\stackrel{\square}{\square-\sqrt{4}}$

WU-M-475/64

Constant-current System - Street and Outdoor Lighting

LED Roadway Light Linear
 M-Class - IP20

Technical notes

Dimensions (incl. optics) $\mathrm{L} \times W \times \mathrm{H}$ 16 LEDs: $60 \times 240 \times 10 \mathrm{~mm}$
Degree of protection: IP20/IK05*
Push-in terminals (WAGO series 2060)
Optics for illumination of streets with
M-Class (acc. to EN 13201)
Optimum illumination - installation ratio: 4.5:1 (distance between luminaire poles
to the height of the luminaire pole)

| Type | Ref. No.
 lengthwise | crosswise |
| :--- | :--- | :--- |$|$| WU-M-488-WW | on request | on request |
| :--- | :--- | :--- |
| WU-M-488-NW | $\mathbf{5 5 6 5 7 1}$ | $\mathbf{5 5 6 4 9 3}$ |
| WU-M-488-CW | $\mathbf{5 5 6 2 9 3}$ | $\mathbf{5 5 6 2 9 2}$ |

* Degree of protection IK08 also possible by use of silicone optics; Ref. No. on request

WU-M-488 M-Class - lengthwise

WU-M-488 M-Class - crosswise

LED Roadway Light M-Class - Water Protected

Technical notes

Dimensions (incl. optics) $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$
16 LEDs, square: $120 \times 120 \times 16 \mathrm{~mm}$
16 LEDs, linear: $240 \times 60 \times 16 \mathrm{~mm}$
Encapsulated for outdoor applications with
degree of protection: IP66/IK05*
Pre-assembled leads:
2 leads: + (red); - (blue)
for luminaires of protection class II, length: 500 mm
Version with 3 leads (incl. PE lead) on request

Optics for illumination of streets with
M-Class (acc. to EN 13201)
Optimum illumination - installation ratio:
4.5:1 (distance between luminaire poles
to the height of the luminaire pole)

Type Optics direction	Shape	Ref. No. lengthwise	crosswise
WU-M-425/B-WW	square	554784	-
WU-M-425/B-NW	square	554409	-
WU-M-425/B-CW	square	553067	-
WU-M-438/B-WW	linear	556699	556700
WU-M-438/B-NW	linear	554797	554798
WU-M-438/B-CW	linear	554789	554790

* Degree of protection IP67/IK08 also possible by use of silicone optics; Ref. No. on request

WU-M-425/B

LED LightEngine M-Class - IP66

Technical notes

Dimensions (incl. optics) $\mathrm{LxW} \times \mathrm{H}$

$$
32 \text { LED: } 240 \times 120 \times 61.7 \mathrm{~mm}
$$

Encapsulated for outdoor applications with
degree of protection: IP66/IKO5*
Pre-assembled leads:
2 leads: + (red); - (blue)
for luminaires of protection class II, length: 500 mm
Optics for illumination of streets with
M-Class (acc. to EN 13201)
Optimum illumination - installation ratio:
4.5:1 (distance between luminaire poles

to the height of the luminaire pole)

Type	Ref. No. lengthwise					
Optics direction			crosswise	WU-M-496-WW-R70	$\mathbf{5 5 8 1 6 6}$	$\mathbf{5 5 7 1 3 8}$
:---	:---	:---				
WU-M-496-NW-R70	$\mathbf{5 5 7 1 4 0}$	$\mathbf{5 5 7 1 3 7}$				
WU-M-496-CW-RNN	$\mathbf{5 5 7 1 3 9}$	$\mathbf{5 5 7 1 3 6}$				

* Degree of protection IP67/IK08 also possible by use of silicone optics; Ref. No. on request

WU-M-496 M-Class - crosswise

Constant-current System - Street and Outdoor Lighting

LED Roadway Light S-Class - IP20

Technical notes

Dimensions (incl. optics) $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$
4 LEDs: $60 \times 65 \times 12.4 \mathrm{~mm}$
16 LEDs: $120 \times 120 \times 12.4 \mathrm{~mm}$
64 LEDs: $240 \times 240 \times 12.4 \mathrm{~mm}$
Degree of protection: IP20/IK05
Push-in terminals (WAGO series 2060)
Optics for illumination of streets with
S-Class (acc. to EN 13201)
Optimum illumination - installation ratio:
7.5:1 (distance between luminaire poles
to the height of the luminaire pole)

Type	Ref. No.	Number of LEDs
WU-M-444/B-WW	$\mathbf{5 5 6 2 2 9}$	4
WU-M-444/B-NW	$\mathbf{5 5 3 9 3 0}$	4
WU-M-444/B-CW	$\mathbf{5 5 3 9 2 9}$	4
WU-M-475/16-WW	$\mathbf{5 5 6 2 3 0}$	16
WU-M-475/16-NW	$\mathbf{5 5 3 9 1 2}$	16
WU-M-475/16-CW	$\mathbf{5 5 3 9 1 1}$	16
WU-M-475/64-WW	$\mathbf{5 5 6 2 3 1}$	64
WU-M-475/64-NW	$\mathbf{5 5 4 8 0 5}$	64
WU-M-475/64-CW	$\mathbf{5 5 6 7 0 6}$	64

WU-M-444/B

WU-M-475/16

WU-M-475/64

Constant-current System - Street and Outdoor Lighting

LED Roadway Light Linear
 S-Class - IP20

Technical notes

Dimensions (incl. optics) $\mathrm{LxW} \times \mathrm{H}$ 16 LEDs: $60 \times 240 \times 12,4 \mathrm{~mm}$

Degree of protection: IP20/IK05
Push-in terminals (WAGO series 2060)
Optics for illumination of streets with
S-Class (acc. to EN 13201)
Optimum illumination - installation ratio:
7.5:1 (distance between luminaire poles
to the height of the luminaire pole)

Type	Ref. No. lengthwise	crosswise
WU-M-488-WW	on request	on request
WU-M-488-NW	on request	on request
WU-M-488-CW	$\mathbf{5 5 6 2 9 5}$	$\mathbf{5 5 6 2 9 4}$

WU-M-488 S-Class - lengthwise

WU-M-488 S-Class - crosswise

LED Roadway Light S-Class - Water
 Protected

Technical notes

Dimensions (incl. optics) $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$
16 LEDs, square: $120 \times 120 \times 18.4 \mathrm{~mm}$
16 LEDs, linear: $240 \times 60 \times 18.4 \mathrm{~mm}$
Encapsulated for outdoor applications with
degree of protection: IP66/IK05
Pre-assembled leads:
2 leads: + (red); - (blue)
for luminaires of protection class II, length: 500 mm
Version with 3 leads (incl. PE lead) on request

Optics for illumination of streets with
S-Class (acc. to EN 13201)
Optimum illumination - installation ratio: 7.5:1 (distance
between luminaire poles to the height of the luminaire pole)

Type Optics direction	Shape	Ref. No. lengthwise	crosswise
WU-M-425/B-WW	square	554785	-
WU-M-425/B-NW	square	554780	-
WU-M-425/B-CW	square	554300	-
WU-M-438/B-WW	linear	556701	556702
WU-M-438/B-NW	linear	554799	556695
WU-M-438/B-CW	linear	554792	554793

WU-M-425/B

WU-M-438/B - crosswise

LED LightEngine S-Class - IP66

Technical notes

Dimensions (incl. optics) $\mathrm{LxW} \times \mathrm{H}$
32 LEDs: $240 \times 120 \times 61,3 \mathrm{~mm}$
Encapsulated for outdoor applications with degree of protection (in preparation): IP66/IK05
Pre-assembled leads:
2 leads: + (red); - (blue)
for luminaires of protection class II, length: 500 mm
Optics for illumination of streets with
S-Class (acc. to EN 13201)
Optimum illumination - installation ratio: 7.5:1 (distance
between luminaire poles to the height of the luminaire pole)

Type	Ref. No.	
Optics direction	lengthwise	crosswise
WU-M-496-WW-R7O	$\mathbf{5 5 8 1 7 2}$	$\mathbf{5 5 8 1 6 9}$
WU-M-496-NW-R7O	$\mathbf{5 5 8 1 7 1}$	$\mathbf{5 5 8 1 6 8}$
WU-M-496-CW-RNN	$\mathbf{5 5 8 1 7 0}$	$\mathbf{5 5 8 1 6 7}$

WU-M-496 S-Class - crosswise

WU-M-496 S-Class - lengthwise

- ${ }^{26}$

Constant-current System - Street and Outdoor Lighting

LED Roadway Light
 Area - IP20

Technical notes

Dimensions (incl. optics) $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$
4 LEDs: $60 \times 65 \times 6.2 \mathrm{~mm}$
16 LEDs: $120 \times 120 \times 6.2 \mathrm{~mm}$
64 LEDs: $240 \times 240 \times 6.2 \mathrm{~mm}$
Degree of protection: IP20/IK05
Push-in terminals (WAGO series 2060)
Optics for illumination of public places
Optimum illumination - installation ratio:
5.5:1 (distance between luminaire poles
to the height of the luminaire pole)

Type	Ref. No.	Number of LEDs
WU-M-444/B-WW	$\mathbf{5 5 6 2 3 2}$	4
WU-M-444/B-NW	$\mathbf{5 5 3 9 3 9}$	4
WU-M-444/B-CW	$\mathbf{5 5 3 9 3 8}$	4
WU-M-475/16-WW	$\mathbf{5 5 6 2 3 3}$	16
WU-M-475/16-NW	$\mathbf{5 5 3 9 2 1}$	16
WU-M-475/16-CW	$\mathbf{5 5 3 9 2 0}$	16
WU-M-475/64-WW	$\mathbf{5 5 6 2 3 4}$	64
WU-M-475/64-NW	$\mathbf{5 5 4 8 0 8}$	64
WU-M-475/64-CW	$\mathbf{5 5 4 8 0 3}$	64

WU-M-444/B

WU-M-475/16

WU-M-475/64

LED Roadway Light Linear
 Area - IP20

Technical notes

Dimensions (incl. optics) $\mathrm{LxW} \times \mathrm{H}$ 16 LEDs: $60 \times 240 \times 6.2 \mathrm{~mm}$
Degree of protection: IP20/IK05
Push-in terminals (WAGO series 2060)
Optics for illumination of public places
Optimum illumination - installation ratio: 5.5:1 (distance between luminaire poles to the height of the luminaire pole)

Type	Ref. No.
WU-M-488-WW	on request
WU-M-488-NW	on request
WU-M-488-CW	$\mathbf{5 5 6 2 9 6}$

WU-M-488 Area

LED Roadway Light

Area - Water

Protected

Technical notes

Dimensions (incl. optics) $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$
16 LEDs, square: $120 \times 120 \times 12.2 \mathrm{~mm}$
16 LEDs, linear: $240 \times 60 \times 12.2 \mathrm{~mm}$
Encapsulated for outdoor applications with
degree of protection: IP66/IK05
Pre-assembled leads:
2 leads: + (red); - (blue)
for luminaires of protection class II, length: 500 mm
Version with 3 leads (incl. PE lead) on request

Optics for illumination of public places
Optimum illumination - installation ratio:
5.5:1 (distance between luminaire poles
to the height of the luminaire pole)

Type	Shape	Ref. No.
WU-M-425/B-WW	square	$\mathbf{5 5 4 7 8 6}$
WU-M-425/B-NW	square	$\mathbf{5 5 4 7 8 1}$
WU-M-425/B-CW	square	$\mathbf{5 5 4 4 1 0}$
WU-M-438/B-WW	linear	$\mathbf{5 5 6 7 0 3}$
WU-M-438/B-NW	linear	$\mathbf{5 5 6 6 9 6}$
WU-M-438/B-CW	linear	$\mathbf{5 5 4 7 9 4}$

WU-M-425/B

WU-M-438/B

Constant-current System - Street and Outdoor Lighting

LED LightEngine Area - IP66

Technical notes

Dimensions (incl. optics) LxW×H
32 LEDs: $240 \times 120 \times 54.6 \mathrm{~mm}$
Encapsulated for outdoor applications with
degree of protection: IP66/IK05
Pre-assembled leads:
2 leads: + (red); - (blue)
for luminaires of protection class II, length: 500 mm
Optics for illumination of public places
Optimum illumination - installation ratio:
5.5:1 (distance between luminaire poles
to the height of the luminaire pole).

Type	Ref. No.
WU-M-496-WW-R70	$\mathbf{5 5 8 1 7 5}$
WU-M-496-NW-R70	$\mathbf{5 5 8 1 7 4}$
WU-M-496-CW-RNN	$\mathbf{5 5 8 1 7 3}$

WU-M-496 Area

LED Linear Allround Street \& Outdoor

These LED modules are suitable for standardcompliant street lighting, paths and squares in accordance with EN 13201.

These Linear Allround modules were designed for built-in into luminaire casings. They enable an easy modular luminaire design with flexibility in system design.

Technical notes

LED built-in module for integration into luminaires 4, 16, 32 or 64 high-efficient High Power LEDs Allowed operating temperature at t_{c} point

$$
\text { at } \mathrm{IF}_{\mathrm{F}}=700 \mathrm{~mA}:-20 \text { to } 85^{\circ} \mathrm{C}
$$

Use of external LED constant current driver
Design for optimum thermal management
efficiency up to $136 \mathrm{~lm} / \mathrm{W}$
Lumen maintenancen L70/B 10 :

$$
\text { 52,000 hrs. (IF } 1050 \mathrm{~mA}) \text { at } t_{p} 60^{\circ} \mathrm{C}
$$

ESD protection class 2
Surge protection: 4 kV

Typical Applications

- Integration in luminaires
- Streetlighting for ME- and S-Classes
- (acc. to EN 13201)
- Illumination of public places

Optische Betriebsdaten

bei $t_{p}=60^{\circ} \mathrm{C}$

Type

[^18]
M-Class Linear Allround

Technical notes

Dimensions (incl. optics) $\mathrm{L} \times W \times \mathrm{H}$
4 LEDs: $50 \times 62.3 \times 10 \mathrm{~mm}$
8 LEDs: $50 \times 113.2 \times 10 \mathrm{~mm}$
16 LEDs: $50 \times 215 \times 10 \mathrm{~mm}$
Degree of protection: IP20/IKO5*
Push-in terminals (WAGO series 2060)
Optics for illumination of streets
with M-Class (acc. to EN 13201)
Optimum illumination - installation ratio:
4.5:1 (distance between luminaire poles
to the height of the luminaire pole).

| Type | Ref. No.
 lengthwise | | crosswise |
| :--- | :--- | :--- | :--- | | Number |
| :--- |
| of LEDs |\(~\left(\begin{array}{llll}\hline WU-M-479/4-WW \& on request \& on request \& 4

\hline WU-M-479/4-NW \& on request \& on request \& 4

\hline WU-M-479/4-CW \& on request \& on request \& 4

\hline WU-M-479/8-WW \& on request \& \mathbf{5 5 6 2 5 2} \& 8

\hline WU-M-479/8-NW \& \mathbf{5 5 6 9 6 2} \& \mathbf{5 5 4 1 9 1} \& 8

\hline WU-M-479/8-CW \& on request \& \mathbf{5 5 4 1 9 2} \& 8

\hline WU-M-479/16-WW \& \mathbf{5 5 6 5 6 7} \& \mathbf{5 5 6 2 5 1} \& 16

\hline WU-M-479/16-NW \& \mathbf{5 5 6 5 2 6} \& \mathbf{5 5 4 1 8 8} \& 16

\hline WU-M-479/16-CW \& on request \& \mathbf{5 5 4 1 8 9} \& 16

\hline\end{array}\right.\)

* Degree of protection IK08 also possible by use of silicone
optics; Ref. No. on request

WU-M-479/4 - crosswise

S-Class Linear Allround

Technical notes

Dimensions (incl. optics) $\mathrm{L} \times W \times \mathrm{H}$ 4 LEDs: $50 \times 62.3 \times 12.4 \mathrm{~mm}$ 8 LEDs: $50 \times 113.2 \times 12.4 \mathrm{~mm}$ 16 LEDs: $50 \times 215 \times 12.4 \mathrm{~mm}$
Degree of protection: IP20/IKO5
Push-in terminals (WAGO series 2060)
Optics for illumination of streets
with S-Class (acc. to EN 13201)
Optimum illumination - installation ratio:
7:1 (lengthwise) or 7.5:1 (crosswise)
(distance between luminaire poles to the height of
the luminaire pole)

$\left.$| Type | Ref. No.
 lengthwise | | crosswise |
| :--- | :--- | :--- | :--- |\quad| Number |
| :--- |
| of LEDs | \right\rvert\,

WU-M-479/4 - crosswise
WU-M-479/8 - crosswise

WU-M-479/4 - lengthwise

WU-M-479/8 - lengthwise

WU-M-479/16 - crosswise

WU-M-479/16 - lengthwise

Constant-current System - Street and Outdoor Lighting

Area Linear Allround

Technical notes

Dimensions (incl. optics) $\mathrm{LxW} \times \mathrm{H}$ 4 LEDs: $50 \times 62,3 \times 6.2 \mathrm{~mm}$ 8 LEDs: $50 \times 113,2 \times 6.2 \mathrm{~mm}$ 16 LEDs: $50 \times 215 \times 6.2 \mathrm{~mm}$
Degree of protection: IP20/IK05
Push-in terminals (WAGO series 2060)
Optics for illumination of public places
Optimum illumination - installation ratio:
5.5:1 (distance between luminaire poles to the
height of the luminaire pole).

Type	Ref. No.	Number of LEDs
WU-M-479/4-WW	on request	4
WU-M-479/4-NW	on request	4
WU-M-479/4-CW	on request	4
WU-M-479/8-WW	$\mathbf{5 5 6 2 6 1}$	8
WU-M-479/8-NW	$\mathbf{5 5 6 2 6 2}$	8
WU-M-479/8-CW	$\mathbf{5 5 6 2 6 3}$	8
WU-M-479/16-WW	$\mathbf{5 5 6 2 5 8}$	16
WU-M-479/16-NW	$\mathbf{5 5 6 2 5 9}$	16
WU-M-479/16-CW	$\mathbf{5 5 6 2 6 0}$	16

WU-M-479/4

WU-M-479/8

WU-M-479/16

Streetlight FlatEmitter SMD 3000-11,000 Im

Built-in lighting modules

These LED modules are suitable for use both in street lighting as well as high-bay and industrial lighting.

Technical notes

Dimensions (LxW×H)
with 12 LEDs:
$73.5 \times 34 \times 6 \mathrm{~mm}$
with 18 LEDs: $\quad 86 \times 36.5 \times 6 \mathrm{~mm}$
with 27 or 42 LEDs: $108 \times 44 \times 6 \mathrm{~mm}$
LEDs on the module are serial connected
Push-in terminals (WAGO series 2060)
LED module is operated at high voltage (up to 150 V).
Safety must be considered acc. EN 60598
Allowed operating temperature at tc point:

-20 to $95^{\circ} \mathrm{C}$

Use of external LED constant current driver
Efficiency up to $142 \mathrm{~lm} / \mathrm{W}$
Lumen maintenance L70/B 10 :

$$
>60,000 \text { hrs. (If } 700 \mathrm{~mA}) \text { at tp } 65^{\circ} \mathrm{C}
$$

Colour rendering index R_{a} : >65
Surge protection: 3 kV
NTC resistor for external driver feedback
of module temperature
WU-M-452-xx/B: optional
WU-M-433-xx/B: Typ NCP 18 xH 103J03RB

WU-M-452-12/B

WU-M-452-18/B

WU-M-433-27/B

WU-M-433-42/B

Type	Ref. No.	Number of LEDs pcs.	Colour	Correlated colour temperature* K	Typ. Iuminous flux and efficiency, typ. voltage (Utyp.) and power consumption (Pel) **400 mA $1 \mathrm{~m} / \mathrm{W}$ lm Im m $\operatorname{lm} / \mathrm{W}$				Typ. CRI Ra
LED modules with 12 LEDs					$\mathrm{P}_{\text {el }}=13.8 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=34.4 \mathrm{~V}$		Pel $=25.3 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=36.2 \mathrm{~V}$		
WU-M-452-12/B-WW	556221	12	warm white	3000-130/+220	1845	134	2990	118	> 70
WU-M-452-12/B-NW	554068	12	neutral white	4000-300/+260	1845	134	2990	118	>70
WU-M-452-12/B-CW	554821	12	cool white	5000-255/+310		146	3260	128	> 65
LED modules with 18 LEDs					$\mathrm{P}_{\text {el }}=20.5 \mathrm{~W}$, $\mathrm{U}_{\text {typ. }}=51.3 \mathrm{~V}$		$\mathrm{P}_{\mathrm{el}}=37.8 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=54 \mathrm{~V}$		-
WU-M-452-18/B-WW	556222	18	warm white	3000-130/+220	2770	135	4485	119	> 70
WU-M-452-18/B-NW	554067	18	neutral white	4000-300/+260	2770	135	4485	119	> 70
WU-M-452-18/B-CW	554823	18	cool white	5000-255/+310	3015	147	4890	129	>65
LED modules with 27 LEDs					$\mathrm{P}_{\text {el }}=30.9 \mathrm{~W}, U_{\text {typ. }}=77.2 \mathrm{~V}$		$\mathrm{P}_{\text {el }}=56.5 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=80.7 \mathrm{~V}$		
WU-M-433-27/B-WW	556223	27	warm white	3000-130/+220	4025	130	6530	116	> 70
WU-M-433-27/B-NW	554066	27	neutral white	4000-300/+260	4025	130	6530	116	>70
WU-M-433-27/B-CW	554817	27	cool white	5000-255/+310	4385	142	7110	126	> 65
LED modules with 42 LEDs					$\mathrm{P}_{\mathrm{el}}=48 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=120 \mathrm{~V}$		$\mathrm{P}_{\text {el }}=87.7 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=125.3 \mathrm{~V}$		
WU-M-433-42/B-WW	556224	42	warm white	3000-130/+220	6265	130	10150	116	> 70
WU-M-433-42/B-NW	554065	42	neutral white	4000-300/+260	6265	130	10150	116	> 70
WU-M-433-42/B-CW	554819	42	cool white	5000-255/+310	6820	142	11060	126	> 65

[^19]
PowerEmitter XP and XML

Built-in PCB lighting modules

Thanks to the use of highly efficient LEDs, PowerEmitter modules guarantee an extremely high lumen output of up to 731 Im at max. 1050 mA .
The modules can be safely operated with various constant-current converters ($350 \mathrm{~mA}, 500 \mathrm{~mA}$, $700 \mathrm{~mA}, 1050 \mathrm{~mA})$. Sufficient cooling must be ensured.

Cables have to be soldered onto the solder pads of PowerEmitter modules, which are available in white, neutral white and warm white, to enable terminal connections to be made. The colours of red, green and blue can be made available on request. To enable the creation of unique light solutions, VS also provides PowerOptics attachments with a variety of beam angle characteristics (see pages 87-89).

Technical notes

PCB diameter: 30 mm
Allowed operating temperature at t_{c} point:
-20 to $60^{\circ} \mathrm{C}$ for luminaires PowerEmitter XP
-20 to $65^{\circ} \mathrm{C}$ for luminaires PowerEmitter XML
Use of external LED constant current driver
FR4-PCB with thermal ducts (PowerEmitter XP)
or aluminium PCB (PowerEmitter XML)
for optimum thermal management
Efficiency up to $132 \mathrm{Im} / \mathrm{W}$
Colour rendering index: white $R_{a}=75$, warm white $R_{a}=80$
ESD protection class 2
Minimum order quantity: 144 pcs.

PowerEmitter XP

XP-C

XP-G

G

PowerEmitter XML

Typical applications

- Integration in luminaires
- Architectural lighting
- Marking paths, stairs, etc
- Furniture lighting
- Light advertising
- Entertainment, retail lighting

XP-E

XML

PowerEmitter XP

Type	Ref. No.	Colour	Correlated colour temperature* K	Luminous flux* (lm), voltage (U) and power consumption (Pel)								Beam angle
				$350 \mathrm{~mA}$		$\begin{aligned} & 500 \mathrm{~mA} \\ & \mathrm{~min} . \end{aligned}$	typ.	700 mA		1050 min.		
PowerEmitter XP-C				$\begin{aligned} & \mathrm{Pel}=1.19-1.37 \mathrm{~W} \\ & \mathrm{U}=3.4-3.9 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=1.75-2 \mathrm{~W} \\ & \mathrm{U}=3.5-4 \mathrm{~V} \end{aligned}$						
WU-M-421-XPC-WW	546676	warm white	2870... 3200	67.2	80.6	87.4	104.8	not allowed		not allowed		110
WU-M-421-XPC-NW	546671	neutral white	3700... 4260	73.9	87.4	96.1	113.6	not allowed		not allowed		110
WU-M-42 1-XPC-CW	546673	cool white	5650... 6950	100.0	114.0	130.0	148.2	not allowed		not allowed		110
PowerEmitter XP-E				$\begin{aligned} & \mathrm{Pel}=1.12-1.37 \mathrm{~W} \\ & \mathrm{U}=3.2-3.9 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=1.65-2 \mathrm{~W} \\ & \mathrm{U}=3.3-4 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{Pel}=2.38-2.87 \mathrm{~W} \\ & \mathrm{U}=3.4-4.1 \mathrm{~V} \end{aligned}$				
WU-M-42 1-XPE-WW	546684	warm white	2870... 3200	80.6	93.9	104.8	122.1	137.0	159.6	not allowed		115
WU-M-421-XPE-NW	546685	neutral white	3700... 4260	93.9	107.0	122.1	139.1	159.6	181.9	not allowed		115
WU-M-421-XPE-CW	546680	cool white	5650... 6950	107.0	122.0	139.1	158.6	181.9	207.4	not allowed		115
PowerEmitter XP-G				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=1.05-1.31 \mathrm{~W} \\ & \mathrm{U}=3-3.75 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=1.55-1.93 \mathrm{~W} \\ & \mathrm{U}=3.1-3.85 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P} \mathrm{Pe}=2.24-2.77 \mathrm{~W} \\ & \mathrm{U}=3.2-3.95 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{Pel}}=3.47-4.25 \mathrm{~W} \\ & \mathrm{U}=3.3-4.05 \mathrm{~V} \end{aligned}$		
WU-M-421-XPG-WW	546688	warm white	2870... 3200	100.0	114.0	140.0	159.6	180.0	205.2	250.0	250.0	125
WU-M-421-XPG-NW	546687	neutral white	3700... 4260	107.0	122.0	149.8	170.8	192.6	219.6	267.5	267.5	125
WU-M-42 1-XPG-CW	546686	cool white	5300... 7050	122.0	139.0	170.8	194.6	219.6	250.2	305.0	347.5	125

Emission data at $\mathrm{t}_{\mathrm{i}}=25^{\circ} \mathrm{C}$ | * Production tolerance of luminous flux: $\pm 7 \%$
Suitable thermal tapes for these LED modules see page 90 .

PowerEmitter XML

Type	Ref. No.	Colour	Correlated colour temperature* K	Luminous flux* (1m), voltage (U) and power consumption (Pel)								Beam angle
				$\begin{aligned} & 350 \mathrm{~mA} \\ & \operatorname{min.} \end{aligned}$		500 mA		700 mA	typ.	1050 min.		
PowerEmitter					$\begin{aligned} & 4 \mathrm{~W} \\ & -12.5 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 6.5 \mathrm{~W} \\ & 13 \mathrm{~V} \end{aligned}$		$\begin{aligned} & -9.45 \mathrm{~W} \\ & -13.5 \mathrm{~V} \end{aligned}$	$\mathrm{P}_{\mathrm{el}}=$ $\mathrm{U}=$	$\begin{aligned} & \mathrm{F}-14 \mathrm{~W} \\ & -14 \mathrm{~V} \end{aligned}$	
WU-M-424-27K	548032	warm white	2650... 2790	260	300	325	375	442	510	560	645	115
WU-M-424-30K	548031	warm white	2950... 3125	280	320	350	400	476	544	602	688	115
WU-M-424-40K	548030	neutral white	3835... 4110	300	340	375	425	510	578	645	731	115

Emission data at $t_{\mathrm{i}}=85^{\circ} \mathrm{C}$ | * Production tolerance of luminous flux: $\pm 7 \%$
Suitable thermal tapes for these LED modules see page 90.

TriplePowerEmitter XP

Built-in PCB lighting modules

Thanks to the use of highly efficient LEDs,
TriplePowerEmitter modules guarantee an extremely high lumen output of up to 622 Im at max. 700 mA .

The modules can be safely operated with various constant-current drivers ($350 \mathrm{~mA}, 500 \mathrm{~mA}$ or $700 \mathrm{~mA})$. Sufficient cooling must be ensured.

The TriplePowerEmitter modules are available in white, neutral white and warm white.

The modules are available without an optical attachment or with a fixed $10^{\circ}, 20^{\circ}, 30^{\circ}$ or 40° optical attachment to enable the creation of different lighting scenes.

Technical notes

PCB diameter: 45 mm
Allowed operating temperature at t_{c} point:

$$
-20 \text { to } 65^{\circ} \mathrm{C}
$$

Use of external LED constant current driver
Aluminium PCB for optimum thermal management
Efficiency up to $109 \mathrm{~lm} / \mathrm{W}$
Colour rendering index:

$$
\text { white } R_{a}=75 \text {, warm white } R_{a}=80
$$

ESD protection class 2
Minimum order quantity: 120 pcs.

Typical applications

- Integration in luminaires
- Architectural lighting
- Marking paths, stairs, etc.
- Furniture lighting
- Light advertising
- Entertainment, retail lighting

Without optics

20°

40°

TriplePowerEmitter XP

Module without optics

Module with optics

Type	Ref. No.	Colour	Correlated colour temperature	Luminous flux* (lm), voltage (U) and power consumption (Pel)				Beam angle
				350 mA	500		700	
				$\mathrm{Pel}_{\text {el }}=3.36-4.1 \mathrm{~W}$	$\mathrm{Pel}^{\text {e }}=$	-6 W	$\mathrm{Pel}=$	
				$\mathrm{U}=9.6-11.7 \mathrm{~V}$	$\mathrm{U}=$	12 V	$\mathrm{U}=$	
			K	min. typ.	min.	typ.	min.	

Without optics

WU-M-422-XPE-WW	546733	warm white	2870... 3200	242	282	314	366	411	479	115
WU-M-422-XPE-NW	546727	neutral white	3700... 4260	282	321	366	417	479	546	115
WU-M-422-XPE-CW	546729	cool white	5650... 6950	321	366	417	476	546	622	115
TriplePowerEmitter XP 10 ${ }^{\circ}$										
WU-M-422-XPE-WW-10 ${ }^{\circ}$	546741	warm white	2870... 3200	218	254	283	330	370	431	10
WU-M-422-XPE-NW-10 ${ }^{\circ}$	546736	neutral white	3700... 4260	254	289	330	376	431	491	10
WU-M-422-XPE-CW-10 ${ }^{\circ}$	546735	cool white	5650... 6950	289	329	376	428	491	560	10

TriplePowerEmitter XP $\mathbf{2 0}^{\circ}$

WU-M-422-XPE-WW-20	$\mathbf{5 4 6 7 4 9}$	warm white	$2870 \ldots 3200$	218	254	283	330	370	431	20
WU-M-422-XPE-NW-20	$\mathbf{5 4 6 7 5 0}$	neutral white	$3700 \ldots 4260$	254	289	330	376	431	491	20
WU-M-422-XPE-CW-20	$\mathbf{5 4 6 7 4 8}$	cool white	$5650 \ldots 6950$	289	329	376	428	491	560	20

TriplePowerEmitter XP 30°

WU-M-422-XPE-WW-30	$\mathbf{5 4 8 0 9 0}$	warm white	$2870 \ldots . .3200$	218	254	283	330	370	431	30
WU-M-422-XPE-NW-30	$\mathbf{5 4 8 0 8 9}$	neutral white	$3700 \ldots 4260$	254	289	330	376	431	491	30
WU-M-422-XPE-CW-30	$\mathbf{5 4 8 0 8 8}$	cool white	$5650 \ldots 6950$	289	329	376	428	491	560	30

TriplePowerEmitter XP $\mathbf{4 0}^{\circ}$

WU-M-422-XPE-WW-40	$\mathbf{5 4 6 7 5 7}$	warm white	$2870 \ldots . .3200$	218	254	283	330	370	431	40
WU-M-422-XPE-NW-40	$\mathbf{5 4 6 7 5 6}$	neutral white	$3700 \ldots 4260$	254	289	330	376	431	491	40
WU-M-422-XPE-CW-40	$\mathbf{5 4 6 7 5 5}$	cool white	$5650 \ldots . .6950$	289	329	376	428	491	560	40

[^20]
PowerOptics3 for XP/XT Modules

PowerOptics3 were specially developed to supplement VS PowerEmitter making it possible for users to put unique lighting solutions into practice. Use of high-grade optical PMMA enables high efficiency factors of up to 90%.

To guarantee easy mounting on PowerEmitter module, the PowerOptics3 are backed with selfadhesive tape. However, depending on the type of application and ambient conditions, the PowerOptics3 module may require additional fixing to ensure secure mounting

For fixation of PowerOptics3 on Star LED modules use self-tapping screws acc. to
ISO 1481/7049-ST2.9-C/F.

A

B

8°

16°

Type	Beam angle* 。	Ref. No.	Drawing	Dimensions * (mm) diameter/module height	Ref. No.	Drawing	Dimensions * (mm) diameter/module height
Optics Ø 26 mm - For VS PowerEmitter XP					Optics © 35 mm - For VS PowerEmitter XP		
PowerOptics3	8	547716	A	26/14.6	548868	B	35/14.6
PowerOptics3	16	547717	A	26/14.6	548869	B	35/14.6
PowerOptics3	26	547718	A	26/14.6	548870	B	35/14.6
PowerOptics3	45	547719	A	26/14.6	548871	B	35/14.6
Optics © 26 mm - For Star XP / XT					Optics © $\mathbf{3 5 ~ m m ~ - ~ F o r ~ S t a r ~ X P ~ / ~ X T ~}$		
PowerOptics3	8	550967	C	26/14.6	550971	D	35/14.6
PowerOptics3	16	550968	C	26/14.6	550972	D	35/14.6
PowerOptics3	26	550969	C	26/14.6	550973	D	35/14.6
PowerOptics3	45	550970	C	26/14.6	550974	D	35/14.6

[^21]
PowerOptics for XP Modules

Various attachable optics are available for XP modules to enable different beam characteristics and illumination levels.

PowerOptics are made of PMMA, a material of high optical efficiency, and therefore achieve efficiencies of up to 92%.

The optics are available in various beam angles and are easily attached to the modules using self-adhesive tape. Depending on the type of application or the expected ambient conditions, it may be necessary to supplement this method of fastening to ensure the optics are securely mounted.

PowerOptics for XP Modules

For TriplePowerEmitter and Spot modules

Various attachable optics are available for
TriplePowerEmitter and the Spot modules of the XP series to enable different beam characteristics and illumination levels.

PowerOptics are made of PMMA, a material of high optical efficiency, and therefore achieve efficiencies of up to 92%
Fixing
PowerOptics 3 XP: with glue
PowerOptics 4 XP: by self tapping screw $2.9 \mathrm{~mm} \times \mathrm{H}$

$$
(H=6.8 \mathrm{~mm}+A+B)
$$

Light distribution curves PowerOptics 3XP

$3 \times P 10^{\circ}$

$3 \times 20^{\circ}$

$3 \times P 30^{\circ}$

$3 \times P 40^{\circ}$

Light distribution curves PowerOptics 4XP

4XP 10°

4XP 20°

4XP 30°

4XP 40°

Type	Ref. No.	Beam angle* -	Dimensions* (mm) diameter x height
Optics for TriplePowerEmitter XP modules			
PowerOptics 3XP 10*	547591	10	50×11.6
PowerOptics 3XP 20°	547589	20	50×11.6
PowerOptics 3XP 30 ${ }^{\circ}$	547587	30	50×11.6
PowerOptics 3XP 40°	547510	40	50×11.6
Optics for Spot XP modules			
PowerOptics 4XP 100	547592	10	50×11.4
PowerOptics 4XP 20 ${ }^{\circ}$	547590	20	50×11.4
PowerOptics 4XP 30 ${ }^{\circ}$	547588	30	50×11.4
PowerOptics 4XP 40 ${ }^{\circ}$	547511	40	50×11.4

[^22]
Reflectors for PowerEmitter XP modules

Reflectors generate a high efficiency, round spot with homogeneous light distribution
Material: PC, with reflective aluminium coating
The reflectors are available in two various beam angles and are easily attached to the modules using self-adhesive tape.
Depending on the type of application or the expected ambient conditions, it may be necessary to supplement this method of fastening to ensure the reflectors are securely mounted
Ref. No.: 54878120°
Ref. No.: 54637045°

Heat Sinks for LED Modules XP and XML

Under no circumstances may LEDSpots ever
be covered by insulation material or similar.
Air ventilation must be ensured.

Heat sinks for PowerEmitter

XP and XML modules

For LED modules with one XP LED up to 700 mA
For LED modules with one XML LED up to 350 mA
Material: thermoconductive resin
Dimensions: ($\varnothing \times$ depth):
$32.4 \times 20 \mathrm{~mm} / 48 \times 12.8 \mathrm{~mm}$
Fixing: with screws
Weight: 16.4 g
Unit: 250 pcs.
Ref. No.: 548739
Drawing/photo A
Ref. No.: 544804 Drawing/photo B

A

B

Heat sink for TriplePowerEmitter XP

For LED modules up to 700 mA
Material: thermoconductive resin
Dimensions ($\varnothing \times$ depth): $46 \times 37.5 \mathrm{~mm}$
Fixing: with screws
Weight: 51 g
Unit: 225 pcs.
Ref. No.: 544805

Thermally
 Conductive Adhesive Transfer Tapes for LED Modules

3M ${ }^{\text {TM }}$ type 8810 and
 Bergquist Bond-Ply ${ }^{\text {® }} 100$

Thermally Conductive Adhesive Transfer Tapes are designed to provide a preferential heat-transfer path between heat-generating components and heat-sinks or other cooling devices.

These tapes are tacky pressure sensitive adhesives loaded with thermally conductive ceramic fillers that do not require a heat cure cycle to form an excellent bond to many substrates. Only pressure is needed to form an excellent bond and thermal interface.

The specialized chemistry renders them modestly soft and able to wet to many surfaces, allowing them to conform well to non-flat substrates, provide high adhesion, and act as a good thermal interface.

The specialized acrylic chemistry of the tapes provides for excellent thermal stability of the base polymer. The thermally conductive tapes are provided on a silicone treated polyester release liner for ease of handling and die culting. The tapes offer excellent adhesive performance with good wetting and flow onto many substrate surfaces.

Depending on the type of application and/or the expected ambient conditions, the modules must be additionally secured to ensure optimum fixing.

For detailed information and application guidelines see 3 M or Bergquist datasheet for thermally conductive adhesive transfer taper (8805; 8810; 8815; 8820; www.3m.com
or Bergquist Bond-Ply ${ }^{\circledR} 100$; www.bergquistcompany.com).

Type	Ref. No.	$\begin{aligned} & \text { Size } \\ & \mathrm{mm} \end{aligned}$	Tape thickness mm	Liner thickness $\mu \mathrm{m}$	Thermal conductive Rth K/W	For VS LED modules	Catalogue page
For round LED modules							
Adhesive pad $\varnothing 28$	536248	$\varnothing 28$	0.25	37.5-30	1.0	PowerEmitter	83-84
Adhesive pad $\varnothing 43$	536977	$\varnothing 43$	0.20	76	0.5	TriplePowerEmitter $\varnothing 45 \mathrm{~mm}$, $\varnothing 50 \mathrm{~mm}$	84-85
Adhesive pad $\varnothing 63$	539625	$\varnothing 63$	0.25	37.5-50	0.5	High Power 24V RGB Triple	194-195
Adhesive pad $\varnothing 107$	539624	$\varnothing 107$	0.25	37.5-50	0.1	High Power 24V RGB Flood	194-195
For square LED modules							
Adhesive pad 49×49	529157	49×49	0.25	37.5-50	0.3	TriplePowerEmitter $\varnothing 50 \mathrm{~mm}$	84-85
For linear LED modules							
Adhesive pad 278×13	548179	278×13	0.25	35.5-50	0.3	LUGA Line	10-12
Adhesive pad 320×35	533815	320×35	0.20	76	0.1	LEDLine High Power	-
Adhesive pad 297×23	539626	297×23	0.25	37.5-50	0.1	High Power 24V RGB Line	194-195

[^23]
Thermal Tapes for LED Modules

Type	Ref. No.	$\begin{aligned} & \hline \text { Size } \\ & \mathrm{mm} \end{aligned}$	Thermal conductive $R_{\text {th }}$ K/W	For VS LED modules	Catalogue page
For LED modules WU-M-425 (ME/S, SYM I, SYM II)					
Thermal conductive tape, adhesive on one side	548252	54×54	≤ 0.04	WU-M-425	51, 55, 68, 72, 76
For LED modules LUGA Industrial 10,000 Im					
Thermal conductive graphite tape	552463	67.25×61	≤ 0.04	WU-M-467	61
For LED modules Streetlight FlatEmitter SMD					
Thermal conductive graphite tape, adhesive on one side	552788	73×33.5	≤ 0.04	WU-M-452-12	60, 82
Thermal conductive graphite tape, adhesive on one side	552787	85.5×36.5	≤ 0.04	WU-M-452-18	60, 82
Thermal conductive graphite tape, adhesive on one side	550224	107.5×43.5	≤ 0.04	WU-M-433	60, 82

LED Modules for Direct Connection to Mains Voltage 220-240 V

LED MODULES FOR MAINS VOLTAGE
 RETROFIT UNIT FOR CONVENTIONAL TECHNOLOGIES

ADVANTAGES OF RECTANGULAR LED MODULES WITH HEAT SINK

- JUST ONE SINGLE UNIT:

LED MODULE, DRIVER AND HEAT SINK

VERY COMPACT SHAPE:
IDENTICAL MOUNTING HOLE LAYOUT AND LAMP FOCUS LIKE FOR CONVENTIONAL BALLAST WITH MOUNTED LAMPHOLDER

- HIGH EFFICENT: POWER FACTOR > 0.9

FOR LUMINAIRES OF PROTECTION CLASS II

LATERAL OR BASE FIXING OPTIONS

CONNECTION WITH PUSH-IN TERMINALS WITH CORD GRIP

LED MODULES FOR OPERATION AT MAINS VOLTAGE 220-240 V

Luminaires of slim and flat design often provide little or no room for additional control gear. Examples of devices that pose a major design challenge are, in particular, small wall, corridor, hall and ceiling luminaires as well as special applications such as lighting of restaurant menus.

Up to now, incandescent or energy-saving lamps with an Edison base or compact fluorescent lamps with an integrated ballast were often used for such lighting projects. But in line with the ErP Directive, 2-pin-based compact fluorescent lamps are also set to be taken off the EU market with effect from 2017.

LED Solutions - Made by Vossloh-Schwabe

Vossloh-Schwabe's new 220-240 V LED modules now provide a perfect opportunity to switch to LED well ahead of time - and without requiring any time-consuming or expensive redesign work on already existing luminaires. Refitting existing installations with these LED modules is equally possible - and equally problem-free.

The dimensions of the rectangular model (with an integrated heat sink) and the lamp focus are comparable to the specifications of a magnetic ballast with an integrated lampholder for compact fluorescent lamps. The circular module is particularly suitable for installation in simple luminaire systems that would more usually be fitted with angled Edison lampholders.

LED Modules for Direct Connection to Mains Voltage 220-240 V

LEDSpot

ReadyLine IP

Complete LEDSpot equipped with optics, heat sink, leads and metal frame

Technical notes

Mains voltage: $220-240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Power factor: > 0.95
Metal frame, round
Heat sink material: thermoconductive resin
For cut-out: $\varnothing 56$ mm
Lens with clear glass
Beam angle: 50°
With leads: Cu tinned, stranded conductors $0.5 \mathrm{~mm}^{2}$,
double FEP/FEP-insulation
MOV - metal-oxide varistor, enclosed
Protection class II
RFI suppressed
Degree of protection: IP54/IP20
Unit: 45 pcs.

IP20

50°

IP54

Max. output W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Number of LEDs pcs.	Colour	Correlated colour temperature K	$\begin{aligned} & \text { Luminous flux } \\ & \begin{array}{l} \text { Im } \\ \text { min. } \\ \text { typ. } \\ \hline \end{array} \end{aligned}$		$\begin{aligned} & \mathrm{CRI} \\ & \mathrm{R}_{\mathrm{a}} \\ & \hline \end{aligned}$	Light intensity Candela	Beam angle	Frame colour	Energy efficiency
Degree of protection: IP54													
4.3	LCH024	554956	220-240	12	warm white	2900... 3200	350	370	> 80	330	50	silver	A
	LCHO24	554957										white	
	LCHO24	554958	220-240	12	neutral white	3700... 4200	380	400	> 80	350	50	silver	A
	LCHO24	554959										white	
Degree of protection: IP20													
4.3	LCHO25	555016	220-240	12	warm white	2900... 3200	350	370	> 80	330	50	silver	A
	LCH025	555017										white	
	LCH025	555019	220-240	12	neutral white	3700... 4200	380	400	>80	350	50	silver	A
	LCH025	555020										white	

LEDSpot

ReadyLine MR 16

Complete LEDSpot equipped with optics,

heat sink and leads

Technical notes

Mains voltage: 220-240 V, 50/60 Hz
Power factor: > 0.95

Lens diameter: 50 mm
Beam angle: 42°
Heat sink material: aluminium
Leads: Cu tinned, stranded conductors $0.5 \mathrm{~mm}^{2}$,
double FEP/FEP-insulation, length: 300 mm
MOV - metal-oxide varistor, enclosed unassembled
Protection class II

42°
RFI suppressed
Unit: 30 pcs.

Max. output W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Number of LEDs pcs.	Colour	Correlated colour temperature K	Lumin Im min.	flux typ.	CRI R_{a}	Light intensity Candela	Beam angle	Energy efficiency
8.7	LR8W	554960	220-240	8	warm white	2900... 3200	515	600	> 80	636	42	A
	LR8W	554961			neutral white	3700... 4200	580	670		680		

LED Modules for Direct Connection to Mains Voltage 220-240 V

ReadyLine S

Built-in LED modules with integrated driver for mains voltage

Technical notes

Mains voltage: 220-240 V, 50/60 Hz
Power factor: > 0.97
Dimensions:

$$
\begin{array}{ll}
\text { with heat sink } & 155 \times 41 \times 32 \mathrm{~mm} \\
\text { without heat sink } & 132 \times 37.4 \times 9.2 \mathrm{~mm}
\end{array}
$$

Aluminium PCB for optimum thermal management
Heat sink made of thermoconductive resin
Protection cover: PC, UV-glued
or rivetted (module with heat sink)
Push-in terminals with push-button:

$$
0.2-0.75 \mathrm{~mm}^{2}(24-18 \mathrm{AWG})
$$

Fixation for modules
with heat sink: fixing holes for screws M4 or self-tapping screws 3.9
with cover: fixing holes for screws M3 or self-tapping screws 2.9
For luminaires of protection class II

RFI suppressed
Weight: 35/140 g (without/with heat sink)
Unit: 80/40 pcs. (without/with heat sink)

Typical applications

- Integration in luminaires
- Residential lighting
- Architectural lighting
- Retail lighting
- Furniture lighting

Max. output W	Type	Ref. No. with heat sink	Ref. No. without heat sink	$\begin{aligned} & \text { Voltage AC } \\ & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Number of LEDs pcs.	Colour	Correlated colour temperature K	Cover	Luminous Im min.	flux typ.	$\begin{aligned} & \mathrm{CRI} \\ & \mathrm{R}_{\mathrm{a}} \\ & \hline \end{aligned}$	Energy efficiency
8.7	LUT33	559522	559526	220-240	21	warm white	2600... 2900	clear	590	650	>80	A
	LUT33	559523	559527					diffuse	480	530	>80	A
	LUT33	550439	550441	220-240	21	warm white	2900... 3200	clear	720	780	> 80	A
	LUT33	551983	551989					diffuse	610	660	>80	A
	LUT33	551984	551990	220-240	21	neutral white	3700... 4200	clear	740	800	>80	A
	LUT33	551985	551991					diffuse	630	680	>80	A
13	LUT33	559524	559030	220-240	30	warm white	2600... 2900	clear	910	940	>80	A
	LUT33	559525	559528					diffuse	780	800	> 80	A
	LUT33	550438	550440	220-240	30	warm white	2900... 3200	clear	1100	1190	>80	A
	LUT33	551986	551992					diffuse	935	1010	>80	A
	LUT33	551987	551993	220-240	30	neutral white	3700... 4200	clear	1140	1210	> 80	A
	LUT33	551988	551994					diffuse	955	1030	>80	A
Accessories			Description					Tape thickness		Thermal conductivity		Breakdown voltage*
-	-	552039	Cord grip with 2 screws for LED modules with heat sink					-		-		-
-	-	555009	Thermally conductive adhesive transfer tape $132 \times 38 \mathrm{~mm}$					0.25 mm		0.8 W		5.5 kV
-	-	553427	Thermally conductive transfer tape, non-adhesive $136 \times 36 \mathrm{~mm}$					0.25 mm		$2 \mathrm{~W} / \mathrm{mK}$		3 kV
-	-	555008**	Thermally conductive transfer tape, adhesive on both sides $136 \times 42 \mathrm{~mm}$					0.19 mm		0.9 W/mk		10.3 kV

* Average value (not for specification purpose) | ** For use in luminaires of protection class I (has to be tested in luminaire)

LED Modules for Direct Connection to Mains Voltage 220-240 V

LED Modules

ReadyLine S IP54

Built-in LED modules with integrated driver for mains voltage

Technical notes

Mains voltage: 220-240 V, 50/60 Hz
Power factor: > 0.97

Dimensions:

$$
\begin{array}{ll}
\text { with heat sink } & 155 \times 41 \times 32 \mathrm{~mm} \\
\text { without heat sink } & 132 \times 37.4 \times 9.2 \mathrm{~mm}
\end{array}
$$

Aluminium PCB for optimum thermal management
Heat sink made of thermoconductive resin
Protection cover: PC, UV-glued
or rivetted (module with heat sink)
Leads: Cu tinned, stranded conductors $0.5 \mathrm{~mm}^{2}$,
double FEP/FEP-insulation, length: 300 mm
Fixation for modules
with heat sink: fixing holes for screws M4
or self-tapping screws 3.9
with cover: fixing holes for screws M3
or self-tapping screws 2.9
For luminaires of protection class II
Degree of protection: IP54
RFI suppressed
Weight: 35/140 g (without/with heat sink)
Unit: 80/40 pcs. (without/with heat sink)

Without heat sink

Typical applications

- Integration in luminaires
- Residential lighting
- Architectural lighting
- Retail lighting
- Furniture lighting

Max. output W	Type	Ref. No. with heat sink	Ref. No. without heat sink	$\begin{aligned} & \text { Voltage AC } \\ & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Number of LEDs pcs.	Colour	Correlated colour temperature K	Cover	Luminous Im min.		CRI R_{a}	Energy efficiency
8.7	LUT33	559529	559533	220-240	21	warm white	2600... 2900	clear	590	650	>80	A
	LUT33	559530	559534					diffuse	480	530	> 80	A
	LUT33	556749	556741	220-240	21	warm white	2900... 3200	clear	720	780	> 80	A
	LUT33	556750	556742					diffuse	610	660	> 80	A
	LUT33	556751	556743	220-240	21	neutral white	3700... 4200	clear	740	800	>80	A
	LUT33	556752	556744					diffuse	630	680	>80	A
13	LUT33	559531	559535	220-240	30	warm white	2600... 2900	clear	910	940	> 80	A
	LUT33	559532	559536					diffuse	780	800	> 80	A
	LUT33	555875	556745	220-240	30	warm white	2900... 3200	clear	1100	1190	>80	A
	LUT33	556753	556746					diffuse	935	1010	>80	A
	LUT33	556755	556747	220-240	30	neutral white	3700... 4200	clear	1140	1210	>80	A
	LUT33	556756	556748					diffuse	955	1030	>80	A
Accessories			Description					Tape thickness		Thermal conductivity		Breakdown voltage*
-	-	552039	Cord grip with 2 screws for LED modules with heat sink					-		-		-
-	-	555009	Thermally conductive adhesive transfer tape $132 \times 38 \mathrm{~mm}$					0.25 mm		0.8 W		5.5 kV
-	-	553427	Thermally conductive transfer tape, non-adhesive $136 \times 36 \mathrm{~mm}$					0.25 mm		$2 \mathrm{~W} / \mathrm{mK}$		3 kV
-	-	555008**	Thermally conductive transfer tape, adhesive on both sides $136 \times 42 \mathrm{~mm}$					0.19 mm		$0.9 \mathrm{~W} / \mathrm{mK}$		10.3 kV

[^24]
LED-Module

ReadyLine DL

Built-in LED modules with integrated driver for mains voltage

Technical notes

LED built-in module for luminaires
Mains voltage: $220-240 \mathrm{~V}, 50-60 \mathrm{~Hz}$
Power factor: > 0.9
Dimensions: $\varnothing 164$ mm
Allowed operating temperature at t_{c} point

$$
-25 \text { to } 80^{\circ} \mathrm{C}
$$

Ambient temperature range ta: -25 to $65^{\circ} \mathrm{C}$
Lumen maintenance L70/B50:
55,000 hrs. at $t_{p} 80^{\circ} \mathrm{C}$
Unit: 36 pcs.

Typical applications

- Downlights
- Replacement for compact fluorescent lamps

Max. output W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Colour	Correlated colour temperature K	Typ. Iuminous flux* and efficiency* at 230 V		Typ. beam angle 。	Typ. CRI R_{a}	Energy efficiency
25	WU-M-498-830	557252	220-240	warm white	3000	2000	100	120	80	A+
	WU-M-498-840	557253	220-240	neutral white	4000	2200	110	120	80	A++
	WU-M-498-850	on request	220-240	cool white	5000	2500	125	120	80	A++

[^25]
LED Modules

ReadyLine C

Built-in LED modules with integrated driver for mains voltage

Technical notes

Mains voltage: 220-240 V, 50/60 Hz
Aluminium PCB for optimum thermal management
Heat sink made of thermoconductive resin
or co-moulded heat sink made of thermoconductive resin and aluminium
Protection cover: PC, UV-glued
or rivetted (module with heat sink)
For luminaires of protection class II
RFI suppressed

Readyline	Heat sink	Weight (g)	Unit (pcs.)
	with	40	36
	without	140	54
C 08	with	40	28
	without	140	36
C 07	with	40	28
	without	140	36
C 06	without	30	45
	without	30	45

Typical applications

- Integration in luminaires
- Residential lighting
- Architectural lighting
- Retail lighting
- Furniture lighting

LED Modules for Direct Connection to Mains Voltage 220-240 V

ReadyLine C 10

Technical notes

Power factor: > 0.97
Dimensions: $\varnothing 100 \mathrm{~mm}$,
$\varnothing 120 \mathrm{~mm}$ with heat sink
Screw terminals for LED module with heat sink: $2.5 \mathrm{~mm}^{2}$
Welded leads for LED module without heat sink: double FEP/FEP-insulation, length: 300 mm ,

central or lateral lead exit
Fixing holes for screws M3 or self-tapping screws 2.9

With central lead exit

With lateral lead exit

With heat sink, protection cover and 2-poles screw terminals

[^26]| Max.
 output
 W | Type | Ref. No.
 Version A -
 with heat sink | Ref. No.
 without heat sink | $\begin{aligned} & \text { Voltage AC } \\ & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$ | Number of LEDs pcs. | Colour | Correlated colour temperature K | Cover | $\begin{aligned} & \text { Luminous flux } \\ & \operatorname{lm} \\ & \min . \end{aligned}$ | | $\begin{aligned} & \mathrm{CRI} \\ & \mathrm{R}_{\mathrm{a}} \\ & \hline \end{aligned}$ | Lead exit | Energy efficiency |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | LR54 | 559537 | 559539 | 220-240 | 54 | warm white | 2600... 2900 | clear | 1100 | 1200 | > 80 | central | $\begin{aligned} & \mathrm{A}+ \\ & \mathrm{A}+ \end{aligned}$ |
| | LR54 | on request | 559540 | | | | | | | | | lateral | |
| | LR54 | 559538 | 559541 | 220-240 | 54 | warm white | 2600... 2900 | diffuse | 935 | 1020 | > 80 | central | $\begin{aligned} & \mathrm{A}+ \\ & \mathrm{A}+ \end{aligned}$ |
| | LR54 | on request | 559542 | | | | | | | | | lateral | |
| | LR54 | 554951 | 554943 | 220-240 | 54 | warm white | 2900... 3200 | clear | 1100 | 1200 | > 80 | central | $\begin{aligned} & \mathrm{A}+ \\ & \mathrm{A}+ \end{aligned}$ |
| | LR54 | on request | 554944 | | | | | | | | | lateral | |
| | LR54 | 554952 | 554945 | 220-240 | 54 | warm white | 2900... 3200 | diffuse | 935 | 1020 | > 80 | central | $\begin{aligned} & \mathrm{A}+ \\ & \mathrm{A}+ \end{aligned}$ |
| | LR54 | on request | 554946 | | | | | | | | | lateral | |
| | LR54 | 554953 | 554947 | 220-240 | 54 | neutral white | 3700... 4200 | clear | 1150 | 1250 | > 80 | central | $\left\{\begin{array}{l} \mathrm{A}+ \\ \mathrm{A}+ \end{array}\right.$ |
| | LR54 | on request | 554948 | | | | | | | | | lateral | |
| | LR54 | 554954 | 554949 | 220-240 | 54 | neutral white | 3700... 4200 | diffuse | 980 | 1060 | > 80 | central | $\begin{aligned} & \mathrm{A}+ \\ & \mathrm{A}+ \\ & \hline \end{aligned}$ |
| | LR54 | on request | 554950 | | | | | | | | | lateral | |
| 17.5 | LR42 | 559543 | 559545 | 220-240 | 42 | warm white | 2600... 2900 | clear | 1140 | 1300 | > 80 | central | A
 A |
| | LR42 | on request | 559546 | | | | | | | | | lateral | |
| | LR42 | 559544 | 559547 | 220-240 | 42 | warm white | 2600... 2900 | diffuse | 930 | 1070 | > 80 | central | $\begin{array}{\|l\|} \hline A \\ A \\ \hline \end{array}$ |
| | LR42 | on request | 559548 | | | | | | | | | lateral | |
| | LR42 | 553828 | 553820 | 220-240 | 42 | warm white | 2900... 3200 | clear | 1440 | 1550 | > 80 | central | $\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$ |
| | LR42 | on request | 553821 | | | | | | | | | lateral | |
| | LR42 | 553829 | 553822 | 220-240 | 42 | warm white | 2900... 3200 | diffuse | 1230 | 1320 | > 80 | central | $\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$ |
| | LR42 | on request | 553823 | | | | | | | | | lateral | |
| | LR42 | 553830 | 553824 | 220-240 | 42 | neutral white | 3700... 4200 | clear | 1480 | 1590 | > 80 | central | $\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$ |
| | LR42 | on request | 553825 | | | | | | | | | lateral | |
| | LR42 | 553831 | 553826 | 220-240 | 42 | neutral white | 3700... 4200 | diffuse | 1260 | 1350 | > 80 | central | $\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$ |
| | LR42 | on request | 553827 | | | | | | | | | lateral | |
| Accessories | | | Description | | | | | Tape thickness | | Thermal conductivity | | Breakdown voltage* | |
| - | - | 552039 | Cord grip with 2 screws for LED modules with heat sink | | | | | - | | - | | - | |
| - | - | 555012 | Thermally conductive adhesive transfer tape $\varnothing 100 \mathrm{~mm}$ | | | | | 0.25 mm | | $0.8 \mathrm{~W} / \mathrm{mK}$ | | 5.5 kV | |
| - | - | 553981 | Thermally conductive transfer tape, non-adhesive $\varnothing 99 \mathrm{~mm}$ | | | | | 0.25 mm | | $2 \mathrm{~W} / \mathrm{mK}$ | | 3 kV | |
| - | - | 553795** | Thermally conductive transfer tape, adhesive on both sides $\varnothing 104 \mathrm{~mm}$ | | | | | 0.19 mm | | 0.9 W/mK | | 10.3 kV | |

LED Modules for Direct Connection to Mains Voltage 220-240 V

ReadyLine C 08

Technical notes

Power factor: > 0.97
Dimensions: $\varnothing 81.5 \mathrm{~mm}$,
$\varnothing 120 \mathrm{~mm}$ with heat sink
Screw terminals for LED module with heat sink: $2.5 \mathrm{~mm}^{2}$
Welded leads for LED module without heat sink: double FEP/FEP-insulation, length: 300 mm , central or lateral lead exit
Fixing holes for screws M3 or self-tapping screws 2.9

With central lead exit

With lateral lead exit

With heat sink, protection cover and 2-poles screw terminals

Max. output W	Type	Ref. No. Version A - with heat sink	Ref. No. without heat sink	$\begin{aligned} & \text { Voltage } \mathrm{AC} \\ & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Number of LEDs pcs.	Colour	Correlated colour temperature K	Cover	$\begin{aligned} & \text { Luminous flux } \\ & \operatorname{lm} \\ & \min . \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{CRI} \\ & \mathrm{R}_{\mathrm{a}} \end{aligned}$	$\begin{aligned} & \text { Lead } \\ & \text { exit } \end{aligned}$	Energy efficiency
13	LR30W	559550	559552	220-240	30	warm white	2600...2900	clear	910	940	> 80	central	A
	LR30W	on request	559553									lateral	A
	LR30W	559551	559554					diffuse	780	800	> 80	central	A
	LR30W	on request	559555									lateral	A
	LR30W	557843	557834	220-240	30	warm white	2900... 3200	clear	1100	1190	> 80	central	A
	LR30W	on request	557835									lateral	A
	LR30W	557844	557836					diffuse	935	1010	> 80	central	A
	LR30W	on request	557837									lateral	A
	LR30W	557845	557838	220-240	30	neutralweiß	3700...4200	clear	1140	1210	> 80	central	A
	LR30W	on request	557839									lateral	A
	LR30W	557846	557840					diffuse	955	1030	> 80	central	A
	LR30W	on request	557841									lateral	A
Accessories			Description						Tape thickness		Thermal conductivity		Breakdown voltage*
-	-	557692	Wärmeleitendes Transferklebeband $\varnothing 76 \mathrm{~mm}$						0.25 mm		0.8 W/mK		5.5 kV
-	-	558229	Thermally conductive adhesive transfer tape $\varnothing 76 \mathrm{~mm}$						0.25 mm		$2 \mathrm{~W} / \mathrm{mK}$		3 kV
-	-	557691**	Thermally conductive transfer tape, adhesive on both sides $\varnothing 82 \mathrm{~mm}$						0.19 mm		$0.9 \mathrm{~W} / \mathrm{mK}$		10.3 kV

[^27]
LED Modules for Direct Connection to Mains Voltage 220-240 V

ReadyLine C 07

Technical notes

Power factor: > 0.95
Dimensions: $\varnothing 73.3 \mathrm{~mm}$;

$$
\varnothing 120 \text { mm with heat sink }
$$

Screw terminals for LED module with heat sink: $2.5 \mathrm{~mm}^{2}$
Welded leads for LED module without heat sink: double FEP/FEP-insulation, length: 300 mm , central or lateral lead exit
Fixing holes for screws M3 or self-tapping screws 2.9

With central lead exit

With lateral lead exit

With heat sink

Max. output W	Type	Ref. No. with heat sink	Ref. No. without heat sink	$\begin{aligned} & \text { Voltage AC } \\ & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Number of LEDs pcs.	Colour	Correlated colour temperature K	Cover	$\begin{aligned} & \text { Luminous flux } \\ & \text { Im } \\ & \text { min. } \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{CRI} \\ & \mathrm{R}_{\mathrm{a}} \end{aligned}$	Lead exit	Energy efficiency
17,5	LR42	558025	556640	220-240	42	warm white	2600... 2900	clear	1140	1300	> 80	central	A
	LR42	on request	559559									lateral	A
	LR42	559560	559563	220-240	42	warm white	2600... 2900	diffuse	930	1070	> 80	central	A
	LR42	on request	559564									lateral	A
	LR42	552019	550382	220-240	42	warm white	2900... 3200	clear	1440	1550	> 80	central	A
	LR42	on request	550958									lateral	A
	LR42	552020	552015	220-240	42	warm white	2900... 3200	diffuse	1230	1320	> 80	central	A
	LR42	on request	552016									lateral	A
	LR42	552021	551448	220-240	42	neutral white	3700... 4200	clear	1480	1590	> 80	central	A
	LR42	on request	550959									lateral	A
	LR42	552022	552018	220-240	42	neutral white	$3700 \ldots 4200$	diffuse	1260	1350	> 80	central	A
	LR42	on request	552017									lateral	A
Accessories			Description					Tape thickness		Thermal conductivity		Breakdown voltage*	
-	-	552039	Cord grip with 2 screws for LED modules with heat sink					-		-		-	
-	-	551265	Thermally conductive adhesive transfer tape $\varnothing 71 \mathrm{~mm}$					0.25 mm		0,8 W/mk		5.5 kV	
-	-	553422	Thermally conductive transfer tape, non-adhesive $\varnothing 68 \mathrm{~mm}$					0.25 mm		$2 \mathrm{~W} / \mathrm{mK}$		3 kV	
-	-	555010**	Thermally conductive transfer tape, adhesive on both sides $\varnothing 74 \mathrm{~mm}$					$0.19 \mathrm{~mm}$		0,9 W/mk		10.3 kV	

[^28]
ReadyLine C 06

Technical notes

Power factor: > 0.95
Dimensions: $\varnothing 60$ mm
Welded leads for LED module without heat sink: double FEP/FEP-insulation, length: 300 mm , central or lateral lead exit
Fixing holes for screws M2

Max. output W	Type	Ref. No.	Voltage AC $50 / 60 \mathrm{~Hz}$ V	Number of LEDs pcs.	Colour	Correlated colour temperature K	Cover	$\begin{aligned} & \text { Luminous flux } \\ & \operatorname{lm} \\ & \min . \end{aligned}$		$\begin{aligned} & \mathrm{CRI} \\ & \mathrm{R}_{\mathrm{a}} \end{aligned}$	Lead exit	Energy efficiency
8,7	LR21W	559565	220-240	21	warm white	2600... 2900	clear	590	650	> 80	central/lateral	A
	LR21W	559566					diffuse	480	530	> 80		A
	LR21W	559567	220-240	21	warm white	2900... 3200	clear	720	780	>80	central/lateral	A
	LR21W	559568					diffuse	610	660	>80		A
	LR21W	559569	220-240	21	neutral white	3700... 4200	clear	760	800	>80	central/lateral	A
	LR21W	559570					diffuse	630	680	> 80		A
Accessories			Description					Tape thickness		Thermal conductivity		Breakdown voltage*
-	-	559968	Thermally conductive adhesive transfer tape $\varnothing 64 \mathrm{~mm}$					$0.25 \mathrm{~mm}$		0,8 W/mK		5.5 kV
-	-	559969	Thermally conductive transfer tape, non-adhesive $\varnothing 59 \mathrm{~mm}$					0.25 mm		$2 \mathrm{~W} / \mathrm{mK}$		3 kV
-	-	559970**	Thermally conductive transfer tape, adhesive on both sides $\varnothing 64 \mathrm{~mm}$					0.19 mm		0,9 W/mk		10.3 kV

[^29]
LED Modules for Direct Connection to Mains Voltage 220-240 V

ReadyLine C 05 / C 03

Technical notes

Power factor: > 0.95
Dimensions: $\varnothing 50 \mathrm{~mm}$
Welded leads for LED module without heat sink: double FEP/FEP-insulation, length: 300 mm , central or lateral lead exit
MOV - metal-oxide varistor, enclosed unassembled
Fixing holes for screws M2

4.3 W - With lateral lead exit

4.3 W - With central lead exit

8.7 W - With lateral

 lead exit
8.7 W - With central lead exit

13 W - With lateral
lead exit

13 W - With central lead exit

Max. output W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Number of LEDs pcs.	Colour	Correlated colour temperature K	Cover	$\begin{aligned} & \text { Luminous flux } \\ & \text { Im } \\ & \text { min. } \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{CRI} \\ & \mathrm{R}_{\mathrm{a}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Lead } \\ & \text { exit } \end{aligned}$	Energy efficiency
4,3	LR12W	559571	220-240	12	warm white	2600... 2900	clear	290	330	> 80	central	A+
	LR12W	559572									lateral	A+
	LR12W	559573					diffuse	255	290	> 80	central	A+
	LR12W	559574									lateral	A+
	LR12W	556835	220-240	12	warm white	2900... 3200	clear	350	370	> 80	central	A+
	LR12W	556836									lateral	A+
	LR12W	556576					diffuse	312	330	>80	central	A+
	LR12W	556837									lateral	A+
	LR 12W	556838	220-240	12	neutral white	3700... 4200	clear	380	400	> 80	central	A+
	LR12W	556839									lateral	A+
	LR12W	556840					diffuse	335	355	> 80	central	A+
	LR12W	556841									lateral	A+
8,7	LR21W	559575	220-240	21	warm white	2600... 2900	clear	590	650	>80	central	A
	LR21W	559576									lateral	A
	LR21W	559577					diffuse	480	530	> 80	central	A
	LR21W	559578									lateral	A
	LR21W	559579	220-240	21	warm white	2900... 3200	clear	720	780	> 80	central	A
	LR21 W	554386									lateral	A
	LR21 W	559580					diffuse	610	660	> 80	central	A
	LR21W	554387									lateral	A
	LR21W	559581	220-240	21	neutralweiß	3700... 4200	clear	760	800	> 80	central	A
	LR21W	554388									lateral	A
	LR21W	559582					diffuse	630	680	> 80	central	A
	LR21W	554389									lateral	A

MOV

[^30]
ReadyLine C 05

Max. output W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Number of LEDs pcs.	Colour	Correlated colour temperature K	Cover	Luminous flux Im min.		CRI R_{a}	Lead exit	Energy efficiency
13	LR30W	559583	220-240	30	warm white	2600... 2900	clear	590	650	> 80	central	A
	LR30W	559584									lateral	A
	LR30W	559585					diffuse	480	530	> 80	central	A
	LR30W	559586									lateral	A
	LR30W	554390	220-240	30	warm white	2900... 3200	clear	1100	1190		central	A
	LR30W	554391									lateral	A
	LR30W	554392					diffuse	935	1010	>80	central	A
	LR30W	554393									lateral	A
	LR30W	554394	220-240	30	neutral white	3700... 4200	clear	1140	1210	> 80	central	A
	LR30W	554395									lateral	A
	LR30W	554396					diffuse	955	1030	>80	central	A
	LR30W	554397									lateral	A
Accessories			Description					Tape thickness		Thermal conductivity		Breakdown voltage*
-	-	555014	Thermally conductive adhesive transfer tape $\varnothing 54 \mathrm{~mm}$					$0.25 \mathrm{~mm}$		$0.8 \mathrm{~W} / \mathrm{mK}$		5.5 kV
-	-	554419	Thermally conductive transfer tape, non-adhesive $\varnothing 49 \mathrm{~mm}$					$0.25 \mathrm{~mm}$		$2 \mathrm{~W} / \mathrm{mK}$		3 kV
-	-	555013**	Thermally conductive transfer tape, adhesive on both sides $\varnothing 54 \mathrm{~mm}$					$0.19 \text { mm }$		$0.9 \mathrm{~W} / \mathrm{mK}$		10.3 kV

* Average value (not for specification purpose) | ** For use in luminaires of protection class I (has to be tested in luminaire)

ReadyLine C 03

mov

Max. output W	Type	Ref. No.	$\begin{aligned} & \text { Voltage } \mathrm{AC} \\ & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Number of LEDs pcs.	Colour	Correlated colour temperature K	Cover	Luminous flux Im min.		CRI Ra_{a}	$\begin{aligned} & \text { Lead } \\ & \text { exit } \end{aligned}$	Energy efficiency
4.3	LR12W	559690	220-240	12	warm white	2600... 2900	clear	290	330	> 80	lateral	A+
	LR12W	559691					diffuse	255	290	> 80	lateral	A+
	LR12W	559693	220-240	12	warm white	2900... 3200	clear	350	370	> 80	lateral	A+
	LR12W	559694					diffuse	312	330	> 80	lateral	A+
	LR12W	559695	220-240	12	neutral white	3700... 4200	clear	380	400	> 80	lateral	A+
	LR12W	559696					diffuse	335	355	> 80	lateral	A+
Accessories			Description					Tape thickness		Thermal conductivity		Breakdown voltage*
-	-	559965	Thermally conductive adhesive transfer tape $\varnothing 37 \mathrm{~mm}$					0.25 mm		$0.8 \mathrm{~W} / \mathrm{mK}$		5.5 kV
-	-	559966	Thermally conductive transfer tape, non-adhesive $\varnothing 32 \mathrm{~mm}$					0.25 mm		$2 \mathrm{~W} / \mathrm{mK}$		3 kV
-	-	559967* *	Thermally conductive transfer tape, adhesive on both sides $\varnothing 37 \mathrm{~mm}$					0.19 mm		$0.9 \mathrm{~W} / \mathrm{mK}$		10.3 kV

[^31]
DOWNLIGHTS

PRO SERIES / PRIME SERIES

ADVANTAGES OF VS LED DOWNLIGHTS

LED Recessed Mounted Downlight

The integration of solid state lighting technology to conventional down light provides optimal light distribution and extended lifetime, all at an affordable price. LED downlights are fully compatible with existing conventional downlight infrastructure, and are the perfect choice for both new and replacement markets.

- PRO SERIES

- Slim design for easy installation in low false ceiling
- Integrated driver, direct connection to mains without additional connectors and/or junction box
- Dimmable with regular phase-cut dimmer (Pro Series)
- Tunable white-option to regulate white colour temperature by simple switch of the mains via wall switch (Pro Tune Series)

- PRIME SERIES

- Very high efficiency of up to $100 \mathrm{~lm} / \mathrm{W}$
- Slim design for easy installation in low false ceiling
- High CRI ≥ 90
- Dimmable with external dimmable drivers

Pro Series

12 W / 18 W

Advanced dimmable design (Pro Series) or tunable white function (Pro Tune Series) Voltage supply: 220-240 V AC
Integrated driver for direct connection to mains Allowed operating temperature: -10 to $50^{\circ} \mathrm{C}$ Allowed storage temperature: -10 to $50^{\circ} \mathrm{C}$ Screw terminals: $2.5 \mathrm{~mm}^{2}$
Quantity of screw terminals: 1×2-poles primary

Protection class II

SELV
Degree of protection: IP20
Service life time: > 35,000 hours (L50)

Pro 12 W

Pro 18 W

Pro 12 W

Pro 18 W

Pro Tune 12 W

Pro Tune 18 W

Type	Ref. No.	Colour	Colour temperature K	$\begin{aligned} & \mathrm{CRI} \\ & \mathrm{R}_{\mathrm{a}} \end{aligned}$	Luminous flux Im	Beam angle。	Power factor	$\begin{aligned} & \text { Dimm- } \\ & \text { ing } \end{aligned}$	Efficiency Im/W	System power W
Pro-12 W										
DL-PRO-12-3000-110	550880	warm white	3000	≥ 80	850	110	> 0.9	Yes	71	12
DL-PRO-12-4000-110	550882	neutral white	4000	≥ 80	880	110	> 0.9	Yes	73	12
DL-PRO-12-6000-110	550884	cool white	6000	≥ 75	910	110	> 0.9	Yes	76	12
Pro-18 W										
DL-PRO-18-3000-110	550885	warm white	3000	≥ 80	1350	110	> 0.9	Yes	75	18
DL-PRO-18-4000-110	550886	neutral white	4000	≥ 80	1450	110	> 0.9	Yes	80	18
DL-PRO-18-6000-110	550887	cool white	6000	≥ 75	1500	110	> 0.9	Yes	85	18
Pro Tune										
DL-PROTUNE-12-110	550888	warm/neutral/cool white	3000/4000/6000	≥ 80	730/870/860	110	> 0.9	No	61/73/72	12
DL-PROTUNE-18-110	550889	warm/neutral/cool white	3000/4000/6000	≥ 80	1200/1480/1420	110	> 0.9	No	67/82/79	18

Test standards: IEC/EN 60598-1, IEC/EN 60598-2-2, IEC/EN 62493, IEC/EN 55015, IEC/EN 61000-3-2, IEC/EN 61000-3-3, IEC/EN 61547

Prime L Series

12 W / 26 W

Current supply
for 12 W downlight: 350 mA DC
for 26 W downlight: 700 mA DC
Forward voltage: 37 V
Allowed operating temperature: -40 to $45^{\circ} \mathrm{C}$ Allowed storage temperature: -40 to $60^{\circ} \mathrm{C}$ Dimmable (dimmable LED drivers see from page 163 on)
Primary lead: PVC-insulation, length: 200 mm

Protection class III

Degree of protection: IP20
Service life time: > 50,000 hours (L70)

Prime L 12 W

Prime L 26 W

Prime L 12 W
99\% clear

Prime L 12 W

Prime L 26 W
99\% clear

Type	Ref. No.	Colour	Colour temperature	$\begin{array}{\|l\|} \hline \mathrm{CRI} \\ \mathrm{R}_{\mathrm{a}} \\ \hline \end{array}$	Luminous flux Im	Beam angle 0	Power W	Efficiency $\operatorname{lm} / \mathrm{W}$	Front plate transparency	Unified glare rating index UGR	Energy efficiency
Prime L-12 W											
DL-PRIME-L-1 2-3000-60-C	550890	warm white	3000	≥ 90	1240	45	12	105	99\% clear	16.9	A
DL-PRIME-L-1 2-3000-80-D	550891	warm white	3000	≥ 90	1130	80	12	95	87\% diffuse	20.8	A
DL-PRIME-L-1 2-4000-60-C	550892	neutral white	4000	≥ 90	1390	45	12	115	99\% clear	16.1	A
DL-PRIME-L-1 2-4000-80-D	550893	neutral white	4000	≥ 90	1240	80	12	105	87\% diffuse	21.7	A
Prime L-26 W											
DL-PRIME-L-26-3000-50-C	550894	warm white	3000	≥ 90	2310	50	26	92	99\% clear	19.8	A
DL-PRIME-L-26-3000-80-D	550895	warm white	3000	≥ 90	2200	80	26	88	87\% diffuse	22.9	A
DL-PRIME-L-26-4000-50-C	550896	neutral white	4000	≥ 90	2400	50	26	92	99\% clear	19.6	A
DL-PRIME-L-26-4000-80-D	550897	neutral white	4000	≥ 90	2250	80	26	88	87\% diffuse	23.6	A

Test standards: IEC/EN 60598-1, IEC/EN 60598-2-2, IEC/EN 62031, IEC/EN 62471, IEC/EN 55015, IEC/EN 61000-3-2, IEC/EN 61000-3-3, IEC/EN 61547

Prime H Series

12 W / 26 W / 38 W and 40 W

Current supply

for 12 W downlight: 350 mA DC
for 26 W downlight: 700 mA DC
for $38 \mathrm{~W} / 40 \mathrm{~W}$ downlight: 1050 mA DC Forward voltage: 37 V
Allowed operating temperature: -40 to $45^{\circ} \mathrm{C}$ Allowed storage temperature: -40 to $60^{\circ} \mathrm{C}$ Dimmable (dimmable LED drivers see from page 163 on)
Primary lead: PVC-insulation, length:
$200 \mathrm{~mm}(12 \mathrm{~W}$ and 26 W)
$300 \mathrm{~mm}(38 \mathrm{~W}$ and 40 W)

Protection class III

Degree of protection: IP20
Service life time: > 50,000 hours (L70)

Prime H 12 W

Prime H 26 W

Prime H 38 W and 40 W

Prime H 26 W
99% clear

Prime H 26 W
87% diffuse

Prime H 38 W/40 W 99% clear

Prime H $38 \mathrm{~W} / 40 \mathrm{~W}$
87% diffuse

Type	Ref. No.	Colour	Colour temperature K	CRI Ra_{a}	$\begin{aligned} & \text { Luminous } \\ & \text { flux } \\ & \mathrm{lm} \\ & \hline \end{aligned}$	Beam angle。	Power W	$\begin{aligned} & \text { Efficiency } \\ & \operatorname{Im} / \mathrm{W} \end{aligned}$	Front plate transparency	Unified glare rating index UGR	Energy efficiency
Prime H-12 W											
DL-PRIME-H-1 2-3000-50-C	550898	warm white	3000	≥ 90	895	50	12	75	99\% clear	12.3	A
DL-PRIME-H 12-3000-60-D	550899	warm white	3000	≥ 90	765	60	12	65	87\% diffuse	15.2	A
DL-PRIME-H-1 2-4000-50-C	550900	neutral white	4000	≥ 90	1010	50	12	85	99\% clear	14.2	A
DL-PRIME-H-1 2-4000-60-D	550901	neutral white	4000	≥ 90	840	60	12	70	87\% diffuse	15.3	A

Prime H-26 W

DL-PRIME-H-26-3000-40-C	$\mathbf{5 5 0 9 0 2}$	warm white	3000	≥ 90	2140	40	26	85	99% clear	11.2	A
DL-PRIME-H-26-3000-70-D	$\mathbf{5 5 0 9 0 3}$	warm white	3000	≥ 90	1820	70	26	70	87% diffuse	19.3	A
DL-PRIME-H-26-4000-40-C	$\mathbf{5 5 0 9 0 4}$	neutral white	4000	≥ 90	2170	40	26	85	99% clear	12.0	A
DL-PRIME-H-26-4000-70-D	$\mathbf{5 5 0 9 0 5}$	neutral white	4000	≥ 90	1915	70	26	70	87% diffuse	18.6	A

Prime H-38 W / 40 W

DL-PRIME-H-383000-40-C	$\mathbf{5 5 0 9 0 6}$	warm white	3000	≥ 90	3240	40	38	85	99% clear	12.4
DL-PRIME-H-38-3000-75-D	$\mathbf{5 5 0 9 0 7}$	warm white	3000	≥ 90	3000	75	38	80	87% diffuse	20.2
DL-PRIME-H-40-4000-40-C	$\mathbf{5 5 0 9 0 8}$	neutral white	4000	≥ 90	3240	40	40	85	99% clear	13.8
DL-PRIME-H-40-4000-75-D	$\mathbf{5 5 0 9 0 9}$	neutral white	4000	≥ 90	2930	75	40	75	87% diffuse	20.3

[^32]Pro and Prime - LED Downlights

Typical Luminance

At 1, 2 and 3 meters

Pro

Light intensity (Lux)												
Colour temperature	Pro-Serie 12 W			Pro-Serie 18 W			Pro Tune-Serie 12 W			Pro Tune-Serie 18 W		
K	1 m	2 m	3 m	1 m	2 m	3 m	1 m	2 m	3 m	1 m	2 m	3 m
Warm white 3000 K	335	80	35	510	125	55	260	65	25	435	105	45
Neutral white 4000 K	380	90	40	620	150	65	310	75	30	525	130	55
Cool white 6000 K	425	105	45	680	170	75	320	80	35	545	135	60

Prime L

Light intensity (Lux)						
Colour temperature	Prime L 12 W			Prime L 26 W		
K	1 m	2 m	3 m	1 m	2 m	3 m
Warm white $3000 \mathrm{~K}-99 \%$ clear	1270	320	140	1995	500	220
Warm white $3000 \mathrm{~K}-87 \%$ diffuse	580	145	65	1065	265	120
Neutral white 4000 K - 99\% clear	1395	350	155	2060	515	230
Neutral white $4000 \mathrm{~K}-87 \%$ diffuse	625	155	70	1075	270	120

Prime H

Light intensity (Lux)									
Colour temperature	Prime H 12 W			Prime H 26 W			Prime H 38 W / 40 W		
K	1 m	2 m	3 m	1 m	2 m	3 m	1 m	2 m	3 m
Warm white $3000 \mathrm{~K}-99 \%$ clear	1120	280	125	3600	900	400	5200	1300	580
Warm white $3000 \mathrm{~K}-87 \%$ diffuse	600	150	70	1210	300	135	1870	470	210
Neutral white $4000 \mathrm{~K}-99 \%$ clear	1260	315	140	3600	900	400	5125	1280	570
Neutral white $4000 \mathrm{~K}-87 \%$ diffuse	660	165	75	1290	325	145	1830	460	200

DECOLED

A NEW GENERATION OF DECORATION

DECOLED - ECO-FRIENDLY LIGHTING FOR INDOOR APPLICATIONS

DecoLED, a highly efficient LED downlight, is the perfect solution for commercial and residential applications. The die-cast casing is fitted with an easy adjustment function that allows the light to be positioned at the desirable angle. The adaptable spring clip makes installation quick, easy and hassle-free, and is suitable for all types of ceiling.

The reflector design of DecoLED 7 W is a perfect 50 W dichroic halogen retrofit. This results in an energy saving of more than 87% and reduces CO_{2} emissions, all of which makes DecoLED the more environmentally sustainable option.

VS DecoLED comes in different beam angles, wattages and white colours to suit any application.

Going greener has never been easier - for further energy-efficient and highly eco-friendly lighting options, VS provides a full range of LED modules to suit your every need.

Typical applications

- Commercial lighting
- Showcase lighting
- Bathroom and kitchen lighting
- Residential lighting
- Entertainment lighting

VS DecoLED

A slim and compact design with integrated thermal management and high-efficiency output, making it ideal for many lighting applications.

Allowed operating temperature: -20 to $40^{\circ} \mathrm{C}$
Allowed storage temperature: -40 to $60^{\circ} \mathrm{C}$
Dimmable (dimmable LED drivers see from
page 163 on)

Protection class III

Degree of protection: IP20
Service life time: > 35,000 hrs (L50)

DecoLED, 7 W

Design style: reflector
Current supply: 350 mA DC
Beam angle: 36°
Adjustable angle: 0 to 30°

$1(\mathrm{~cd} / \mathrm{klm})$

$$
\text { Adjustable angle: } 0 \text { to } 30^{\circ}
$$

| Type | Ref. No. | Colour | Colour temperature
 K | CRI
 R_{a} | Luminous flux
 Im | Light intensity
 cd | Beam angle
 ${ }^{2}$ | Field angle
 0 | Power
 W | Energy
 efficiency |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DecoLED-7-2700-36 | $\mathbf{5 5 2 0 9 6}$ | warm white | 2700 | 85 | 600 | 1150 | 36 | 74 | 7 | A+ |

Typical Luminance

Of DecoleDs at 1, 2 and 3 meters

Intensity (lux) Colour temperature K $\mathbf{3 6}^{\circ}$								2 m	
Warm White 2700 K	1200	300	3 m						
Warm White 3000 K	-	-	133						
Neutral White 4000 K	-	-	-						
Cool White 6000 K	-	-	-						

LED Constant Current Drivers

[^33]
LEDSpots for Retail, Residential and Furniture Lighting

FOR RETAIL, RESIDENTIAL AND FURNITURE LIGHTING

CONVENIENT LED TECHNOLOGY

As the perfect replacement for halogen lamps, the new LED modules made by VS are ideal for use in furniture, false ceilings as well as cooker hoods.

These LED modules are available with high-power LEDs and different optics attachments. The circular or square metal frame is available in a white, silver, Diffuse silver or gold finish. Furthermore, flexible snap-in fasteners make it extremely easy and quick to exchange halogen spots, which are still in widespread use.

The package is rounded off by a matching LED drivers housed in a compact casing plus a set of cables with preassembled plugs for connecting up to two LED modules.

Typical applications for LEDSpots

- Replacement of more common lamps (AR 111, MR 16, MR 11)
- Integration in luminaires (except PRO series)
- Retail lighting
- Marking paths, stairs, etc.
- Furniture lighting (IP54 version for humid rooms)
- Light advertising
- Entertainment

The specifications contained in this catalogue can change due to technical innovations. Any such changes will be made without separate notification.

Please read the safety and installation instructions on the individual products as well as further technical information provided in the extensive product descriptions at
www.vossloh-schwabe.com.

LEDSpots at a Glance

The use of LEDs offers many advantages in comparison to conventional lighting solutions.

ShopLine Series

- Replacement for HID lamps 20-100 W
- Built-in spot with heat sink based on LUGA modules
- Reflector for homogeneous light distribution

Complete LEDSpots with Frame

- Replacement for Halogen lamps 20-35 W
- Flat LED spot with heat sink and frame based on COB or SMD modules
- For built-in into ceilings or metal sheets

LEDSpots for Retail Lighting - HID Replacement

ShopLine 111

Built-in LEDSpot equipped with a reflector, heat sink, leads and optional plug

- Replacement for AR 111

Technical notes

Reflector: $\varnothing 11 \mathrm{~mm}$
Heat sink material: aluminium
Allowed operating temperature at tp point:

$$
65^{\circ} \mathrm{C}(\mathrm{~L} 90 / \mathrm{B} 10)
$$

Max operating temperature tc: $85^{\circ} \mathrm{C}$
Colour accuracy initially: 3 SDCM;
after 50,000 hrs. operating time: 4 SDCM
Use of external LED constant-current drivers required
The ceramic PCB ensures optimum thermal
management
Fixation
reflector: front and back of rim
heat sink: lateral fixation with M5 screws and
nuts or rear side fixation with tapping screws ST2.9
Plastic clear cover to protect reflector
(opaque cover on request)
Leads: Cu tinned, stranded conductors $0.5 \mathrm{~mm}^{2}$,
FEP-insulation and neoprene sleeve, length: 600 mm
With integrated cord grip
Unit: 6 pcs.

Dimensions		Weight
Hl	H	g
40 mm	99.65 mm	310
60 mm	119.65 mm	430
80 mm	139.65 mm	550

Type	Ref. No.	Colour	Correlated colour temperature K	Typ. Iuminous flux and typical voltage (Uyp.) and power consumption $\left(\mathrm{Pel}_{\mathrm{el}}\right)^{*}$			CRI R_{a}	Light intensity at max. current Candela	Beam angle	Energy efficiency at max. current
H1 = 40 mm - ShopLine 111088				$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=7.8 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=22.3 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=11.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=22.8 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=16.6 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=23.7 \mathrm{~V} \\ & \hline \end{aligned}$				
Shopline 111088	553679	warm white	3000	925	1240	1630	85	17500	12	A+
ShopLine 111088	553682	neutral white	4000	980	1305	1725	85	18400	12	A+
Shopline 111088	553680	warm white	3000	905	1205	1590	85	5500	24	A+
Shopline 111088	553683	neutral white	4000	955	1275	1680	85	5700	24	A+
Shopline 111088	553681	warm white	3000	975	1300	1710	85	4300	32	A+
Shopline 111088	553684	neutral white	4000	1030	1370	1810	85	4600	32	A+
Shopline 111088	558975	warm white	3000	950	1270	1670	85	3000	40	A+
ShopLine 111088	558976	neutral white	4000	1005	1340	1770	85	3100	40	A+
Shopline 111088	558977	pearl white	3100	905	1235	1615	85	17000	12	A+
Shopline 111088	558978	pearl white	3100	880	1205	1575	85	5100	24	A+
Shopline 111088	558979	pearl white	3100	950	1295	1700	85	4200	32	A+
ShopLine 111088	558980	pearl white	3100	925	1265	1660	85	2900	40	A+

[^34]
ShopLine 111

Type	Ref. No.	Colour	Correlated colour temperature K	Typ. luminous flux and typical voltage (Utyp.) and power consumption $\left(\mathrm{Pe}_{\mathrm{e}}\right)^{*}$			CRI R_{a}	Light intensity at max. current Candela	Beam angle	Energy efficiency at max. current
H1 = 40 mm - ShopLine 111128				$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=11.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=33.4 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=17.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=34.4 \mathrm{~V} \\ & \hline \end{aligned}$					
Shopline 111128	555333	warm white	3000	1465	2000	-	85	12200	18	A++
Shopline 111128	555336	neutral white	4000	1560	2120	-	85	13000	18	A++
Shopline 111128	555334	warm white	3000	1480	2025	-	85	4900	24	A++
Shopline 111128	555337	neutral white	4000	1575	2145	-	85	5200	24	A++
Shopline 111128	555335	warm white	3000	1500	2050	-	85	4200	36	A++
ShopLine 111128	555338	neutral white	4000	1600	2170	-	85	4400	36	A++
Shopline 111128	558989	pearl white	3100	1450	1980	-	85	12300	18	A+
Shopline 111128	558990	pearl white	3100	1470	2005	-	85	4100	24	A++
Shopline 111128	558991	pearl white	3100	1485	2025	-	85	4150	36	A++
H1 = 60 mm - ShopLine 111128				$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=11.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=33.4 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=17.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=34.4 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=24.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=35.6 \mathrm{~V} \end{aligned}$				
Shopline 111128	555339	warm white	3000	1465	2000	2670	85	16200	18	A+
Shopline 111128	555342	neutral white	4000	1560	2120	2820	85	17100	18	A+
Shopline 111128	555340	warm white	3000	1480	2025	2700	85	6500	24	A+
Shopline 111128	555343	neutral white	4000	1575	2145	2855	85	6800	24	A+
Shopline 111128	555341	warm white	3000	1500	2050	2735	85	5600	36	A+
Shopline 111128	555344	neutral white	4000	1600	2170	2885	85	5800	36	A++
Shopline 111128	558992	pearl white	3100	1450	1980	2645	85	16200	18	A+
Shopline 111128	558993	pearl white	3100	1470	2005	2675	85	6500	24	A+
Shopline 111128	557888	pearl white	3100	1485	2025	2705	85	5100	36	A+
H1 = 80 mm-ShopLine 111158				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=14.6 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=41.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=21.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=42.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=31.1 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=44.4 \mathrm{~V} \\ & \hline \end{aligned}$				
Shopline 111158	555345	warm white	3000	1825	2490	3310	85	21000	18	A+
Shopline 111158	555348	neutral white	4000	1925	2630	3490	85	22000	18	A+
Shopline 111158	555346	warm white	3000	1845	2520	3350	85	8100	24	A+
Shopline 111158	555349	neutral white	4000	1950	2650	3525	85	8500	24	A+
Shopline 111158	555347	warm white	3000	1845	2520	3350	85	6800	36	A+
Shopline 111158	555350	neutral white	4000	1950	2650	3525	85	7200	36	A+
Shopline 111158	559001	pearl white	3100	1805	2455	3280	85	20000	18	A+
Shopline 111158	559002	pearl white	3100	1825	2490	3315	85	8000	24	A+
Shopline 111158	557886	pearl white	3100	1825	2490	3315	85	7000	36	A+
HL Versions - ShopLine 111128				$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=11.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=33.4 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=17.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=34.4 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=24.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=35.6 \mathrm{~V} \\ & \hline \end{aligned}$				
Shopline 111128 HL	559494	pearl white	3100	1450	1980	2650	85	15600	18	A+
Shopline 111128 HL	559495	pearl white	3100	1470	2005	2675	85	5800	26	A+
Shopline 111128 HL	559496	pearl white	3100	1470	2005	2675	85	4900	34	A+

[^35]
$18^{\circ}(128 \mathrm{HL})$

$26^{\circ}(128 \mathrm{HL})$

$34^{\circ}(128 \mathrm{HL})$

ShopLine NEXT 111

Built-in LEDSpot equipped with a interchangeable reflector, heat sink and leads

- Replacement for AR 111

Technical notes

Reflector: $\varnothing 111 \mathrm{~mm}$
Heat sink material: aluminium
Allowed operating temperature at tp point:

$$
65^{\circ} \mathrm{C}(\mathrm{L90} / \mathrm{B} 10)
$$

Max operating temperature tc: $85^{\circ} \mathrm{C}$
Colour accuracy initially: 3 SDCM;
after 50,000 hrs. operating time: 4 SDCM
Use of external LED constant-current drivers required
The ceramic PCB ensures optimum thermal
management
Plastic clear cover to protect reflector
(opaque cover on request)
Fixation
reflector: front rim
heat sink: lateral fixation with M5 screws and
nuts or rear side fixation with tapping screws ST2.9 Leads: Cu tinned, stranded conductors $0.5 \mathrm{~mm}^{2}$,

FEP-insulation and neoprene sleeve, length: 300 mm
With integrated cord grip
Unit: 6 pcs.

Dimensions		Weight
Hl	H	g
40 mm	99.65 mm	310
60 mm	119.65 mm	430
80 mm	139.65 mm	550

Type	Ref. No. For black LEDSpot	Ref. No. For white LEDSpot	Colour	Correlated colour temperature K	Typ. luminous flux and typical voltage (Utyp.) and power consumption $\left(P_{\mathrm{e}}\right){ }^{*}$			CRI R_{a}	Light intensity at max. current Candela	Beam angle 。	Energy efficiency at max. current
H1 = $\mathbf{4 0} \mathbf{~ m m}$	Line	111088			$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=7.8 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=22.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline P_{\text {el }}=11.4 \mathrm{~W} \\ & U_{\text {typ. }}=22.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & P_{\text {el }}=16.6 \mathrm{~W} \\ & U_{\text {typ. }}=23.7 \mathrm{~V} \end{aligned}$				
Next 111088	559208	559294	warm white	3000	925	1240	1630	85	17500	12	A+
Next 111088	559216	559302	neutral white	4000	980	1305	1725	85	18600	12	A+
Next 111088	559209	559295	warm white	3000	905	1205	1590	85	5500	24	A+
Next 111088	559217	559303	neutral white	4000	955	1275	1680	85	5700	24	A+
Next 111088	558137	559296	warm white	3000	975	1300	1710	85	4300	32	A+
Next 111088	558140	559304	neutral white	4000	1030	1370	1810	85	4600	32	A+
Next 111088	559210	559297	warm white	3000	950	1270	1670	85	3000	40	A+
Next 111088	559218	559305	neutral white	4000	1005	1340	1770	85	3100	40	A+
Next 111088	559211	559298	pearl white	3100	905	1235	1615	85	17000	12	A+
Next 111088	559213	559299	pearl white	3100	880	1205	1575	85	5100	24	A+
Next 111088	559214	559300	pearl white	3100	950	1295	1700	85	4200	32	A+
Next 111088	559215	559301	pearl white	3100	925	1265	1660	85	2900	40	A+

[^36]
LEDSpots for Retail Lighting - HID Replacement

ShopLine NEXT 111

Type	Ref. No. For black LEDSpots	Ref. No. For white LEDSpots	Colour	Correlated colour temperature K	Typ. luminous flux and typical voltage (Utyp.) and power consumption $\left(\mathrm{Pe}_{\mathrm{e}}\right)^{*}$			CRI Ra_{a}	Light intensity at max. current Candela	Beam angle	Energy efficiency at max. current
H1 = 60 mm - ShopLine NEXT 111128					$\begin{aligned} & P_{\text {el }}=11.7 \mathrm{~W} \\ & U_{\text {typ. }}=33.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=17.2 \mathrm{~W} \\ & \text { U }_{\text {typ. }}=34.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & P_{\mathrm{el}}=24.9 \mathrm{~W} \\ & U_{\text {typ. }}=35.6 \mathrm{~V} \end{aligned}$				
Next 111128	558141	559306	warm white	3000	1465	2000	2670	85	16200	18	A+
Next 111128	558144	559311	neutral white	4000	1560	2120	2820	85	17100	18	A+
Next 111128	558142	559194	warm white	3000	1480	2025	2700	85	6500	24	A+
Next 111128	558145	559312	neutral white	4000	1575	2145	2855	85	6800	24	A+
Next 111128	558143	559307	warm white	3000	1500	2050	2735	85	5600	36	A+
Next 111128	558146	559313	neutral white	4000	1600	2170	2885	85	5800	36	A++
Next 111128	559237	559308	pearl white	3100	1450	1980	2645	85	16200	18	A+
Next 111128	559238	559309	pearl white	3100	1470	2005	2675	85	6500	24	A+
Next 111128	559239	559310	pearl white	3100	1485	2025	2705	85	5200	36	A+
H1 = 80 mm - ShopLine NEXT 111158					$\begin{aligned} & P_{\text {el }}=14.6 \mathrm{~W} \\ & U_{\text {typ. }}=41.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=21.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=42.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=31.1 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=44.4 \mathrm{~V} \end{aligned}$				
Next 111158	558190	559326	warm white	3000	1825	2490	3310	85	21000	18	A+
Next 111158	558193	559332	neutral white	4000	1925	2630	3490	85	22000	18	A+
Next 111158	558191	559327	warm white	3000	1845	2520	3350	85	8100	24	A+
Next 111158	558194	559333	neutral white	4000	1950	2650	3525	85	8500	24	A+
Next 111158	558192	559328	warm white	3000	1845	2520	3350	85	6800	36	A+
Next 111158	558195	559334	neutral white	4000	1950	2650	3525	85	7200	36	A+
Next 111158	559287	559329	pearl white	3100	1805	2455	3280	85	20000	18	A+
Next 111158	559288	559330	pearl white	3100	1825	2490	3315	85	8000	24	A+
Next 111158	559289	559331	pearl white	3100	1825	2490	3315	85	7000	36	A+
Food Version - ShopLine NEXT 111158							$\begin{aligned} & P_{\text {el }}=31.1 \mathrm{~W} \\ & U_{\text {typ. }}=44.4 \mathrm{~V} \end{aligned}$				
Next 111158	558728	559190	"pink effect"	2000	-	-	1670	82	3430	36	A+
Next 111158	558729	559192	warm white	3000	-	-	2140	85	4400	36	A+
Next 111158	558730	559191	"white effect"	4000	-	-	1945	70	4000	36	A+
Next 111158	558731	559193	neutral white	4000	-	-	2235	85	4600	36	A+

* Production tolerance of luminous flux, voltage and power consumption: $\pm 10 \%$

With Zhaga Adaptor for Aluminium Reflectors

Reflektor size
top: $\varnothing 94 \mathrm{~mm}$
bottom: $\varnothing 40 \mathrm{~mm}$
height: 50 mm

Type	Ref. No.	Ref. No.	Colour	Correlated colour	Typ. Iuminous flux and typical voltage (Utyp.) and power consumption (Pel) *			$\begin{array}{\|c} \hline \mathrm{CRI} \\ \mathrm{R}_{\mathrm{a}} \\ \hline \end{array}$
	For black LEDSpots	For white LEDSpots		temperature K	$\begin{aligned} & 350 \mathrm{~mA} \\ & \mathrm{~lm} \end{aligned}$	$\begin{aligned} & 500 \mathrm{~mA} \\ & \hline 1 \mathrm{~m} \\ & \hline \end{aligned}$	$700 \mathrm{~mA}$ lm	
H1 = 40 mm - ShopLine NEXT 111088 Without reflector					$\begin{aligned} & \mathrm{P}_{\mathrm{e} \mid}=7.8 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=22.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=11.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=22.8 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=16.6 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=23.7 \mathrm{~V} \end{aligned}$	
Next 111088	559941	on request	pearl white	3100	1135	1555	2035	85
H1 = $\mathbf{6 0} \mathbf{~ m m ~ - ~ S h o p L i n e ~ N E X T ~} 111128$ Without reflector					$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=11.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=33.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=17.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=34.4 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=24.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=35.6 \mathrm{~V} \end{aligned}$	
Next 111128	559943	on request	pearl white	3100	1720	2345	3135	85
H1 = $\mathbf{8 0} \mathbf{~ m m}$ - ShopLine NEXT 111158 Without reflector					$\begin{aligned} & \hline \mathrm{P}_{\mathrm{e}}=14.6 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=41.7 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=21.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=42.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=31.1 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=44.4 \mathrm{~V} \end{aligned}$	
Next 111158	559944	on request	pearl white	3100	2140	2915	3885	85

LEDSpots for Retail Lighting - HID Replacement

ShopLine 85

Built-in LEDSpot equipped with a reflector, heat sink, leads and optional plug

Technical notes

Reflector: $\varnothing 85 \mathrm{~mm}$
Heat sink material: aluminium
Allowed operating temperature at t_{p} point

$$
65^{\circ} \mathrm{C}(\mathrm{L9O} / \mathrm{B} 10)
$$

Max operating temperature $\mathrm{t}_{\mathrm{C}}: 85^{\circ} \mathrm{C}$
Colour accuracy initially: 3 SDCM;
after 50,000 hrs. operating time: 4 SDCM
Use of external LED constant-current drivers required
The ceramic PCB ensures optimum thermal
management
Fixation
heat sink: lateral fixation with M5 screws and nuts or rear side fixation with tapping screws ST2.9 Leads: Cu tinned, stranded conductors $0.5 \mathrm{~mm}^{2}$,

FEP-insulation and neoprene sleeve,
length: 300 mm , with or without plug
With integrated cord grip
Weight: 375 g
Unit: 6 pcs.

32° (088)

$24^{\circ}(128)$
24° (088)

-

36° (128)

Type	Ref. No.	Colour	Correlated colour temperature K				CRI R_{a}	Light intensity at max. current Candela	Beam angle	Energy efficiency at max. current
ShopLine 85088				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=7.8 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=22.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=11.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=22.8 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=16.6 \mathrm{~W} \\ & U_{\text {ryp. }}=23.7 \mathrm{~V} \\ & \hline \end{aligned}$				
Shopline 85088	554969	warm white	3000	960	1285	1690	85	17675	12	A+
Shopline 85088	555351	neutral white	4000	1020	1360	1790	85	18600	12	A+
Shopline 85088	554971	warm white	3000	940	1255	1650	85	5555	24	A+
Shopline 85088	555353	neutral white	4000	1000	1320	1750	85	5755	24	A+
Shopline 85088	554973	warm white	3000	1000	1330	1755	85	4350	32	A+
Shopline 85088	555355	neutral white	4000	1055	1405	1855	85	4645	32	A+
Shopline 85088	559098	warm white	3000	975	1300	1710	85	3030	40	A+
ShopLine 85088	559099	neutral white	4000	1030	1370	1810	85	3130	40	A+
Shopline 85088	559100	pearl white	3100	935	1280	1675	85	17170	12	A+
Shopline 85088	559101	pearl white	3100	915	1250	1635	85	5150	24	A+
Shopline 85088	559102	pearl white	3100	970	1326	1735	85	4220	32	A+
Shopline 85088	559103	pearl white	3100	950	1295	1700	85	2930	40	A+
ShopLine 85128				$\begin{aligned} & \hline \mathrm{P}_{\text {el }}=11.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=33.4 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=17.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=34.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=24.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=35.6 \mathrm{~V} \end{aligned}$				
Shopline 85128	554981	warm white	3000	1535	2095	2794	85	17600	18	A+
Shopline 85128	555357	neutral white	4000	1630	2220	2952	85	18300	18	A++
Shopline 85128	554983	warm white	3000	1550	2120	2826	85	7050	24	A+
Shopline 85128	555359	neutral white	4000	1650	2245	2986	85	7500	24	A++
Shopline 85128	554985	warm white	3000	1535	2095	2794	85	5850	36	A+
ShopLine 85128	555361	neutral white	4000	1630	2220	2952	85	6050	36	A++
Shopline 85128	559104	pearl white	3100	1520	2075	2770	85	17500	18	A+
Shopline 85128	559105	pearl white	3100	1535	2100	2800	85	7000	24	A+
Shopline 85128	559106	pearl white	3100	1520	2080	2770	85	5800	36	A+

[^37]
LEDSpots for Retail Lighting - HID Replacement

ShopLine EVO90

Built-in LEDSpot equipped with a reflector,

 heat sink and leads
Technical notes

Reflector: $\varnothing 90 \mathrm{~mm}$, aluminium, bayonet fixing
Holder: PBT, inner ring: metallized
Heat sink material: aluminium
Allowed operating temperature at t_{p} point:
-25 to $85^{\circ} \mathrm{C}$
DMC 125 (L90/B 10; 40,000 hrs)
DMC 128 (L90/B 10; 50,000 hrs)
Colour accuracy initially: 3 SDCM;
after 50,000 hrs. operating time: 4 SDCM
Use of external LED constant-current drivers required
The ceramic PCB ensures optimum thermal
management
Fixation
heat sink: lateral fixation with M5 screws and
nuts or rear side fixation with tapping screws ST2.9
Leads: Cu tinned, stranded conductors $0.5 \mathrm{~mm}^{2}$,
FEP-insulation and neoprene sleeve, length: 350 mm
With integrated cord grip
Weight: 360 g
Unit: 6 pcs.

EVO90 125 - 12°

EVO90 128-18 ${ }^{\circ}$

EVO90 $125-22^{\circ}$

EVO90 128-26

EVO90 125-32

EVO90 128-36

ShopLine EVO90

Type	Ref. No.	Colour	Correlated colour temperature K	Typ. luminous flux and typical voltage ($U_{\text {typ. }}$) and power consumption (Pel)			CRI R_{a}	Light intensity at max. current Candela	Beam angle	Energy efficiency at max. current
Narrow beam angle: $12{ }^{\circ}$				$\begin{aligned} & \mathrm{P}_{\mathrm{e} l}=12 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=34.1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=17.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=35.4 \mathrm{~V} \end{aligned}$					
EVO90 125	558406	warm white	2700	1250	1630	-	82	12350	12	A+
EVO90 125	558409	warm white	3000	1340	1750	-	85	13650	12	A+
EVO90 125	558415	neutral white	4000	1430	1870	-	85	14550	12	A+
Medium beam angle: $\mathbf{2 2}^{\circ}$				$\begin{aligned} & \hline P_{\text {el }}=12 \mathrm{~W} \\ & U_{\text {typ. }}=34.1 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=17.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=35.4 \mathrm{~V} \\ & \hline \end{aligned}$					
EVO90 125	558407	warm white	2700	1235	1615	-	82	4550	22	A+
EVO90 125	558410	warm white	3000	1325	1730	-	85	5150	22	A+
EVO90 125	558413	neutral white	4000	1415	1850	-	85	5350	22	A+
Wide beam angle: 32°				$\begin{aligned} & \hline P_{\text {el }}=12 \mathrm{~W} \\ & U_{\text {typ. }}=34.1 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=17.7 \mathrm{~W} \\ & U_{\text {typ. }}=35.4 \mathrm{~V} \end{aligned}$					
EVO90 125	558408	warm white	2700	1235	1615	-	82	2500	32	A+
EVO90 125	558411	warm white	3000	1325	1730	-	85	2750	32	A+
EVO90 125	558414	neutral white	4000	1415	1850	-	85	2850	32	A+
Narrow beam angle: $18{ }^{\circ}$				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=11.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=33.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=17.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=34.4 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=24.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=35.6 \mathrm{~V} \end{aligned}$				
EVO90 128	558085	warm white	2700	1515	2070	2760	82	12500	18	A+
EVO90 128	558089	warm white	3000	1590	2170	2890	85	12550	18	A++
EVO90 128	558094	neutral white	4000	1685	2300	3055	85	13150	18	A++
Medium beam angle: $\mathbf{2 6}^{\circ}$				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=11.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=33.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=17.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=34.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=24.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=35.6 \mathrm{~V} \end{aligned}$				
EVO90 128	558086	warm white	2700	1515	2070	2760	82	6970	26	A+
EVO90 128	557898	warm white	3000	1590	2170	2890	85	7040	26	A++
EVO90 128	558095	neutral white	4000	1685	2300	3055	85	7450	26	A++
Wide beam angle: $36{ }^{\circ}$				$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=11.7 \mathrm{~W} \\ & U_{\text {typ. }}=33.4 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=17.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=34.4 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=24.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=35.6 \mathrm{~V} \end{aligned}$				
EVO90 128	558088	warm white	2700	1515	2070	2760	82	4230	36	A+
EVO90 128	558090	warm white	3000	1590	2170	2890	85	4280	36	A++
EVO90 128	558096	neutral white	4000	1685	2300	3055	85	4500	36	A++
Pearl White 2000 lm				$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=7.8 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=22.3 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=11.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=22.8 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=16.6 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=23.7 \mathrm{~V} \end{aligned}$				
EVO90 088	558412	pearl white	3100	1030	1405	1840	85	10400	14	A+
EVO90 088	558413	pearl white	3100	1030	1405	1840	85	4800	24	A+
EVO90 088	558414	pearl white	3100	1030	1405	1840	85	2530	34	A+
Pearl White 3000 Im				$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=11.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=33.4 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=17.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=34.4 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=24.9 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=35.6 \mathrm{~V} \end{aligned}$				
EVO90 128	558091	pearl white	3100	1570	2150	2865	85	12000	18	A+
EVO90 128	558092	pearl white	3100	1570	2150	2865	85	6920	26	A+
EVO90 128	558093	pearl white	3100	1570	2150	2865	85	420	36	A+

CRI > 90 on request

Reflectors for ShopLine EVO90

Reflectors made of aluminium with bayonet fixation Surface: anodised, Weight: 27 g, Unit: 30 pcs.

Ref. No.	Beam characteristic	Beam angle						
Reflectors D90 H50						DMC125	DMS088	DMS 128
$\mathbf{5 5 7 3 5 9}$	narrow	12°	14°	18°				
$\mathbf{5 5 7 3 6 0}$	medium	22°	26°	26°				
$\mathbf{5 5 7 3 6 1}$	wide	32°	36°	36°				

Usage and maintenance

If necessary clean reflectors with mild soap, water and soft cloth.
Never use any commercial cleaning solvents on reflectors, like alcohol.
Please handle or install reflectors with wearing gloves, skin oils may damage reflector or its optical characteristic.

LEDSpots for Retail Lighting - HID Replacement

ShopLine EVO75

Built-in LEDSpot equipped with a reflector, heat sink and leads

Technical notes

Reflector: $\varnothing 75 \mathrm{~mm}$, aluminium, bayonet fixing
Holder: PBT, inner ring: metallized
Heat sink material: aluminium

Allowed operating temperature at t_{p} point:
-25 to $85^{\circ} \mathrm{C}$
DMC 125 (L90/B 10; 40,000 hrs)
DMS088 (L90/B 10; 50,000 hrs)
Colour accuracy initially: 3 SDCM;
after 50,000 hrs. operating time: 4 SDCM
Use of external LED constant-current drivers required
The ceramic PCB ensures optimum thermal
management
Fixation
heat sink: lateral fixation with M5 screws and
nuts or rear side fixation with tapping screws ST2.9
Leads: Cu tinned, stranded conductors $0.5 \mathrm{~mm}^{2}$,
FEP-insulation and neoprene sleeve, length: 350 mm

EVO75 125-15 ${ }^{\circ}$
EVO75 125-25

EVO75 125-32 ${ }^{\circ}$

With integrated cord grip
Weight: 295 g, Unit: 6 pcs.

Type	Ref. No.	Colour	Correlated colour temperature K	Typ. luminous flux and typical voltage ($U_{\text {typ. }}$) and power consumption (Pel)			CRI R_{a}	Light intensity at max. current Candela	Beam angle	Energy efficiency at max. current
Narrow beam angle: 15°				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=12 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=34.1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=17.7 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=35.4 \mathrm{~V} \end{aligned}$					
EVO75 125	557782	warm white	2700	1260	1650	-	82	13480	15	A+
EVO75 125	557785	warm white	3000	1355	1765	-	85	14740	15	A+
EVO75 125	557791	neutral white	4000	1445	1890	-	85	15430	15	A+
Medium beam angle: $\mathbf{2 5}^{\circ}$										
EVO75 125	557783	warm white	2700	1260	1650	-	82	6100	25	A+
EVO75 125	557786	warm white	3000	1355	1765	-	85	6700	25	A+
EVO75 125	557792	neutral white	4000	1445	1890	-	85	7040	25	A+
Wide beam angle: $\mathbf{3 2}^{\circ}$										
EVO75 125	557784	warm white	2700	1260	1650	-	82	3155	32	A+
EVO75 125	557787	warm white	3000	1355	1765	-	85	3440	32	A+
EVO75 125	557793	neutral white	4000	1445	1890	-	85	3620	32	A+
Pearl White				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=7.8 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=22.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}=}=11.4 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=22.8 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=16.6 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=23.7 \mathrm{~V} \\ & \hline \end{aligned}$				
EVO75 088	557788	pearl white	3100	1030	1405	1840	85	12050	16	A+
EVO75 088	557789	pearl white	3100	1040	1420	1860	85	5950	28	A+
EVO75 088	557790	pearl white	3100	1030	1405	1840	85	3350	34	A+

CRI >90 on request

Reflectors for ShopLine EVO75

Reflectors made of aluminium with bayonet fixation Surface: anodised, Weight: 17 g , Unit: 30 pcs.

Ref. No.	Beam characteristic	Beam angle	
Reflectors D75 H40	DMC125	DMS088	
$\mathbf{5 5 7 1 5 2}$	narrow	15°	16°
$\mathbf{5 5 7 1 5 3}$	medium	25°	28°
$\mathbf{5 5 7 1 5 4}$	wide	32°	34°

Usage and maintenance

If necessary clean reflectors with mild soap, water and soft cloth.
Never use any commercial cleaning solvents on reflectors, like alcohol.
Please handle or install reflectors with wearing gloves, skin oils may damage reflector or its optical characteristic.

ActiveLine LUGA

Built-in LEDSpot equipped with a reflector, heat sink and leads

Technical notes

Reflector: $\varnothing 50 \mathrm{~mm}$
Heat sink material: aluminium
Allowed operating temperature at t_{c} point:

$$
-40 \text { to } 65^{\circ} \mathrm{C}(\mathbf{L 9 0} / \mathbf{B} \mathbf{1 0})
$$

Colour accuracy initially: 3 SDCM;
after 50,000 hrs. operating time: 4 SDCM
Use of external LED constant-current drivers required
The ceramic PCB ensures optimum thermal
management
Plastic clear cover to protect reflector
(opaque cover on request)
Version with plug on request

ActiveLine

9.1 / 7.1 / 6.1 / Quad

Built-in LEDSpot equipped with a reflector, heat sink and leads

Technical notes

Reflector: $\varnothing 50 \mathrm{~mm}$
Heat sink material: aluminium

(Quad: thermoconductive resin)
Allowed operating temperature at tc point:
-40 to $85^{\circ} \mathrm{C}$ ($\left.\mathbf{L 7 0} / \mathbf{B 3 0}\right)$
-20 to $80^{\circ} \mathrm{C}$ (Quad)
Colour accuracy: 3 SDCM
Use of external LED constant-current drivers required
Aluminium PCB for optimum thermal management
Plastic clear cover to protect reflector
(opaque cover on request)
Version with plug on request

ActiveLine PRO

Complete LEDSpots equipped with a reflector or optics, heat sink, leads and metal frame
Type and Ref. No. on request

LEDSpots for Retail Lighting - HID Replacement

ActiveLine LUGA C

Technical notes

Reflector: $\varnothing 50 \mathrm{~mm}$
Leads: Cu tinned, stranded conductors $0.5 \mathrm{~mm}^{2}$,

FEP-insulation and neoprene sleeve, A
length: 200 mm
With integrated cord grip
Weight: 300 g
Unit: 35 pcs.

34°

A

ActiveLine (B) - max. 500 mA

Type	Ref. No.	Colour	Correlated colour temperature K	$\begin{aligned} & \text { Typ. luminous flux and typical voltage (Utyp.) } \\ & \text { and power consumption }\left(\mathrm{P}_{\mathrm{el}}\right)^{\star} \\ & \begin{array}{l\|l} 350 \mathrm{~mA} \\ \mathrm{~lm} \end{array} \\ & \begin{array}{l} 500 \mathrm{~mA} \\ \mathrm{~min} . \end{array} \\ & \hline \end{aligned}$		$\begin{array}{\|c} \hline \mathrm{CRI} \\ \mathrm{R}_{\mathrm{a}} \end{array}$	Light intensity at max. current Candela	Beam angle	Energy efficiency at max. current	Drawing
Narrow beam angle: $\mathbf{2 5}^{\circ}$				$\mathrm{P}_{\mathrm{el}}=11 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=31.4 \mathrm{~V}$	$\mathrm{P}_{\mathrm{el}}=16.3 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=32.6 \mathrm{~V}$					
Luga C 115 27K	559388	warm white	2700	1190	-	82	2390	25	A+	A
Luga C 115 30K	559391	warm white	3000	1275	-	85	2560	25	A+	A
Luga C 115 40K	559394	neutral white	4000	1355	-	85	2720	25	A++	A
Luga C 115 30K	559412	warm white	3000	1065	-	95	3220	25	A+	A

Medium beam angle: 34°

Luga C 11527 K	559389	warm white	2700	1170	-	82	1645	34	A+	A
Luga C 115 30K	559392	warm white	3000	1250	-	85	1755	34	A+	A
Luga C 115 40K	559395	neutral white	4000	1325	-	85	1860	34	A++	A
Luga C 115 30K	559413	warm white	3000	1045	-	95	1465	34	A+	A

Wide beam angle: $48{ }^{\circ}$

Luga C 11527 K	559390	warm white	2700	1210	-	82	1110	48	A+	A
Luga C 115 30K	559393	warm white	3000	1295	-	85	1185	48	A+	A
Luga C 11540 K	559396	neutral white	4000	1375	-	85	1260	48	A++	A
Luga C 115 30K	559414	warm white	3000	1080	-	95	990	48	A+	A

Narrow beam angle: $\mathbf{2 5}$

Luga C 115 27K	559397	warm white	2700	1190	1580	82	3165	25	A+	B
Luga C 115 30K	559400	warm white	3000	1275	1685	85	3370	25	A+	B
Luga C 11540 K	559403	neutral white	4000	1355	1795	85	3590	25	A+	B
Luga C 115 30K	559418	warm white	3000	1065	1405	95	2815	25	A+	B

Medium beam angle: 34°

Luga C 11527 K	559398	warm white	2700	1170	1545	82	2160	34	A+	B
Luga C 115 30K	559401	warm white	3000	1250	1650	85	2310	34	A+	B
Luga C 115 40K	559404	neutral white	4000	1325	1760	85	2460	34	A+	B
Luga C 115 30K	559419	warm white	3000	1045	1380	95	1930	34	A+	B

Wide beam angle: $\mathbf{4 8}^{\circ}$

Luga C 115 27K	559399	warm white	2700	1210	1600	82	1460	48	A+	B
Luga C 115 30K	559402	warm white	3000	1295	1710	85	1560	48	A+	B
Luga C 115 40K	559405	neutral white	4000	1375	1820	85	1660	48	A+	B
Luga C 115 30K	559420	warm white	3000	1080	1430	95	1310	48	A+	B

[^38]LEDSpots for Retail Lighting - HID/Halogen Replacement

ActiveLine LUGA C

Technical notes

Reflector: $\varnothing 50 \mathrm{~mm}$
Leads: Cu tinned, stranded conductors AWG22,
PVC-insulation, length: 200 mm
With integrated cord grip
Weight: 145 g
Unit: 45 pcs.

25°

34°

Type	Ref. No.	Colour	Correlated colour temperature K	```Typ. luminous flux and typical voltage (Utyp.) and power consumption (Pel)* 350 mA Im```	$\begin{array}{r} \mathrm{CRI} \\ \\ \mathrm{R}_{\mathrm{a}} \\ \hline \end{array}$	Light intensity at max. current Candela	Beam angle	Energy efficiency at max. current
Narrow beam angle: 25° - LUGA C 104				$\mathrm{P}_{\mathrm{el}}=10.2 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=29.2 \mathrm{~V}$				
Luga C 104 27K	559379	warm white	2700	1020	82	2050	25	A+
Luga C 104 30K	559382	warm white	3000	1080	85	2170	25	A+
Luga C 104 40K	559385	neutral white	4000	1160	85	2330	25	A++
Luga C 104 30K	559406	warm white	3000	914	95	1850	25	A+
Medium beam angle: $34{ }^{\circ}$ - LUGA C 104				$\mathrm{P}_{\mathrm{el}}=10.2 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=29.2 \mathrm{~V}$				
Luga C 104 27K	559380	warm white	2700	1005	82	1410	34	A+
Luga C 104 30K	559383	warm white	3000	1065	85	1495	34	A+
Luga C 104 40K	559386	neutral white	4000	1145	85	1610	34	A++
Luga C 104 30K	559407	warm white	3000	905	95	1270	34	A+
Wide beam angle: 48° - LUGA C 104				$\mathrm{P}_{\text {el }}=10.2 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=29.2 \mathrm{~V}$				
Luga C 104 27K	559381	warm white	2700	1045	82	955	48	A+
Luga C 104 30K	559384	warm white	3000	1105	85	1010	48	A+
Luga C 104 40K	559387	neutral white	4000	1190	85	1090	48	A++
Luga C 104 30K	559408	warm white	3000	940	95	860	48	A+

[^39]
ActiveLine 9.1 \& 7.1

Technical notes

Reflector: $\varnothing 50 \mathrm{~mm}$
Heat sink material: aluminium
Leads: Cu tinned, stranded conductors AWG22,
PVC-insulation, length: 200 mm
With integrated cord grip
Weight: 145 g
Unit: 45 pcs.

ActiveLine 9.1

ActiveLine 7.1

25° - ActiveLine 9.1

36° - ActiveLine 9.1

25° - Activeline 7.1

Type	Ref. No.	Colour	Correlated colour temperature K	Typ. luminous flux and typical voltage (Utyp.)and power consumption (Pel $)$350 mA 500 mA Im Im		CRI R_{a}	Light intensity at max. current Candela	Beam angle	Energy efficiency at max. current
Narrow beam angle: 25° - ActiveLine 9.1				$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=6.2 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=17.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & P_{\mathrm{el}}=9.3 \mathrm{~W} \\ & U_{\text {typ. }}=18.5 \mathrm{~V} \end{aligned}$				
ActiveLine 9.1 27K	559442	warm white	2700	580	780	80	1400	25	A+
ActiveLine 9.1 30K	559444	warm white	3000	615	825	80	1430	25	A+
ActiveLine 9.1 40K	559446	neutral white	4000	645	865	80	1540	25	A++
Medium beam angle: $36{ }^{\circ}$ - ActiveLine 9.1									
ActiveLine 9.1 27K	559443	warm white	2700	580	780	80	1150	36	A+
ActiveLine 9.1 30K	559445	warm white	3000	615	825	80	1220	36	A+
Activeline 9.1 40K	559447	neutral white	4000	645	865	80	1350	36	A++
Narrow beam angle: $\mathbf{2 5}^{\circ}$ - ActiveLine 7.1									
Activeline 7.1 27K	559436	warm white	2700	580	-	80	1000	25	A+
ActiveLine 7.1 30K	559438	warm white	3000	615	-	80	1075	25	A+
Activeline 7.1 40K	559440	neutral white	4000	645	-	80	1150	25	A++
Medium beam angle: $36{ }^{\circ}$ - ActiveLine 7.1									
Activeline 7.1 27K	559437	warm white	2700	580	-	80	865	36	A+
ActiveLine 7.1 30K	559439	warm white	3000	615	-	80	925	36	A+
Activeline 7.1 40K	559441	neutral white	4000	645	-	80	1010	36	A++

LEDSpots for Residential Lighting - Halogen Replacement

ActiveLine 6.1

Technical notes

Reflector: $\varnothing 50 \mathrm{~mm}$
Heat sink material: aluminium
Leads: Cu tinned, stranded conductors AWG22,
PVC-insulation, length: 200 mm
With integrated cord grip
Weight: 145 g
Unit: 45 pcs.

Type	Ref. No.	Colour	Correlated colour temperature K	Typ. Iuminous flux and typical voltage (Utyp.) and power consumption (P_{e}) $350 \mathrm{~mA}$ lm	CRI R_{a}	Light intensity at max. current Candela	Beam angle	Energy efficiency at max. current
Narrow beam angle: $\mathbf{2 4}{ }^{\circ}$ - ActiveLine 6.1				$\mathrm{P}_{\text {el }}=6.8 \mathrm{~W}, \mathrm{U}_{\text {typ. }}=19.4 \mathrm{~V}$				
Activeline 6.1 27K	559430	warm white	2700	520	80	950	24	A+
Activeline 6.1 30K	559432	warm white	3000	550	80	1010	24	A+
Activeline 6.1 40K	559434	neutral white	4000	575	80	1050	24	A+
Medium beam angle: $36{ }^{\circ}$ - ActiveLine 6.1								
Activeline 6.1 27K	559431	warm white	2700	520	80	800	36	A+
Activeline 6.1 30K	559433	warm white	3000	550	80	870	36	A+
Activeline 6.1 40K	559435	neutral white	4000	575	80	950	36	A+

ActiveLine Quad

Technical notes

Optics: $\varnothing 50$ mm
Leads: Cu tinned, stranded conductors AWG22,
PVC-insulation, length: 300 mm
ESD protection class 2
Weight: 90 g
Unit: 45 pcs.

10°

30°

20°

40°

LEDSpot ActiveLine Quad 30°

LR4W	XTE 3000K bin Q3	547792	547788	warm white	2870... 3200	338	373	450	496	601	663	1600	30	A
LR4W	XTE 4000K bin Q4	549915	548863	neutral white	3700... 4260	360	398	479	529	640	707	1700	30	A+
LR4W	XPE 6300K bin Q4	547800	547796	cool white	5650... 6950	360	398	468	517	612	676	1630	30	A+

LEDSpot ActiveLine Quad 40°

LR4W	XTE 3000K bin Q3	547791	547726	warm white	2870... 3200	338	373	450	496	601	663	1100	40	A
LR4W	XTE 4000K bin Q4	549914	547837	neutral white	3700... 4260	360	398	479	529	640	707	1180	40	A+
LR4W	XPE 6300K bin Q4	547799	547795	cool white	5650... 6950	360	398	468	517	612	676	1130	40	A+

[^40]| Type |
| :--- |

LEDSpot ActiveLine Quad 20°

LR4W	XTE 3000K bin Q3	547793	547789	warm white	2870... 3200	338	373	450	496	601	663	3100	20	A
LR4W	XTE 4000K bin Q4	549916	547940	neutral white	3700... 4260	360	398	479	529	640	707	3300	20	A+
LR4W	XPE 6300K bin Q4	547801	547797	cool white	5650... 6950	360	398	468	517	612	676	3150	20	A+

LEDSpots for Residential and Furniture Lighting - Halogen Replacement

LEDSpots

Complete LEDSpot equipped with optics, heat sink, leads and frame

LEDSpot IPLine

Metal frame, round
For cut-out: $\varnothing 56 \mathrm{~mm}$
Degree of protection: IP54

LEDSpot SmartLine COB / XT

Metal frame, round or square
For cut-out: $\varnothing 56$ mm
Degree of protection: IP40

LEDSpot StartLine

Resin or steel frame, round
For cut-out: $\varnothing 56 \mathrm{~mm}$
Degree of protection: IP20

Surface Kit with Mounted LEDSpot

Plastic frame to use IPLine, SmartLine or Startline
as surface mounting spots
Dimensions $(\varnothing \times H)$: $\varnothing 67 \times 30 \mathrm{~mm}$
Degree of protection: IP20

LEDSpot DiscLine

Metal frame, round
For cut-out: $\varnothing 56 \mathrm{~mm}$
Degree of protection: IP40

LEDSpot EffectLine

Metal frame, round or square
For cut-out: $\varnothing 37$ mm
Degree of protection: IP20

LEDSpot Sets

On request, you will receive complete sets that
contain the desired number of LEDSpots, a respective
number of cable sets and the required LED drivers.

Lead sets for LEDSpots

Lead sets with connector for easy and fast connection.

LEDSpots for Residential and Furniture Lighting - Halogen Replacement

LEDSpot IPLine

Complete LEDSpot IP54 equipped with optics, heat sink, leads and metal frame

Technical notes

Metal frame, round
For cut-out: $\varnothing 56$ mm
LEDSpot with one LED and with thermoplastic heat sink
Reflector with clear glass (opaque glass on request)
Beam angle: 30° or 50° (XTE), 40° (COB)
Leads: Cu tinned, stranded conductors AWG22,
PVC-insulation, length: 250 mm
Use of external LED constant-current drivers required
Snap-in clips for easy installation

Degree of protection: IP54

Unit: 45 pcs.

LCH-022 / LCH-023

30°
50°

40°

Type	Description	LEDSpot version	Colour	Correlated colour temperature K	Luminou and po 350 mA min.	us flux (Im) wer con A typ.) and ty sumption 500 mA min.	pical vo $\left.\left(P_{\mathrm{e}}\right)\right)^{*}$ typ.	tage (Utyp) 700 mA min.		Light intensity at max. current Candela		Beam angle	Energy efficiency at max. current
LEDSpot IPLine (LCH-022)					$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=0.98 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=3.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=1.48 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=3 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & P_{\text {el }}=2.17 \mathrm{~W} \\ & U_{\text {typ. }}=3.1 \mathrm{~V} \end{aligned}$		30°	50°		
LCH-022	XTE 3000K bin min Q3	A	warm white	2870...3200	79.8	88	103.7	114.4	135.7	149.6	290	170	50	A+
LCH-022	XTE 4500K bin min Q5	B	neutral white	4250... 4750	91	100.3	121	133.4	161.7	178.3	360	190	50	A++
LCH-022	XTE 6000K bin min R3	C	cool white	5000... 6950	103.7	114.3	139.7	152.1	184.4	203.3	370	210	50	A++
LEDSpot IPLine COB (LCH-023)					$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=3.5 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=10 \mathrm{~V} \end{aligned}$						350	/ 40°		
LCH-023	COB 3000K bin min Q3	D	warm white	2920... 3070	250	285	-	-	-	-	330	-	40	A+
LCH-023	COB 4200K bin min Q5	E	neutral white	3850...4650	263	300	-	-	-	-	380	-	40	A+

Emission data at $t_{i}=85^{\circ} \mathrm{C} \mid \quad$ * Production tolerance of luminous flux, voltage and power consumption: $\pm 7 \%$

	LEDSpot IPLine						LEDSpot IPLine COB	
Frame colour	Ref. No. A (warm white)		Ref. No. B (neutral white)		Ref. No. C (cool white)		Ref. No. D (warm white)	Ref. No. E (neutral white)
	30°	50°	30°	50°	30°	50°	40°	40°
silver	555403	552083	555405	552085	555407	552087	552089	552091
white	555402	552082	555404	552084	555406	552086	552088	552090

LEDSpots for Residential and Furniture Lighting - Halogen Replacement

LEDSpot SmartLine COB

Complete LEDSpot equipped with optics, heat sink, leads and metal frame

Technical notes

Metal frame, round or square
For cut-out: $\varnothing 56$ mm
LEDSpot with one LED and with an aluminium heat sink
Beam angle: 40°
Leads: Cu tinned, stranded conductors AWG22,
PVC-insulation, length: 250 mm
Use of external LED constant-current drivers required
Snap-in clips for easy installation
for luminaire sheets (type LCH-017 and -020)
for ceilings (type LCH-019 and -021)
Degree of protection: IP40
Unit:
90 pcs. (type LCH-017 and -020)
40 pcs. (type LCH-019 and -021)

LCH-017
LCH-019

40°

Type	Description	LEDSpot version for luminaire sheets	LEDSpot version for ceiling	Colour	Correlated colour temperature K	Luminous flux (Im) and typical voltage $\left(U_{\text {typ. }}\right)$ and power consumption (Pel)* at 350 mA min. Ityp.		Light intensity at max. current Candela	Frame shape round square $^{\text {squ }}$		Energy efficiency at max. current
						$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=3.5 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=10 \mathrm{~V} \end{aligned}$					
All types	COB 3000K 40°	A	C	warm white	2920... 3070	250	285	330	round	square	A+
All types	COB 4200K 40°	B	D	neutral white	3850... 4650	263	300	380	round	square	A+

Emission data at $t_{c}=25^{\circ} \mathrm{C} \mid$ * Production tolerance of luminous flux, voltage and power consumption: $\pm 7 \%$

	For luminaire sheets (LCH-017 and LCH-020)				For ceilings (LCH-O19 and LCH-021)			
Frame colour	Ref. No. A /warm w round	square	Ref. No. B neutral round	square	Ref. No. C lwarm round	square	Ref. No. D neutral round	square
silver	548912	548928	548916	548932	548920	548936	548924	548940
silver mat	548913	-	548917	-	548921	-	548925	-
gold	548914	-	548918	-	548922	-	548926	-
white	548915	548931	548919	548935	548923	548939	548927	548943

LEDSpots for Residential and Furniture Lighting - Halogen Replacement

LEDSpot SmartLine XT

Complete LEDSpot equipped with optics,

 heat sink, leads and metal frame
Technical notes

Metal frame, round or square
For cut-out: $\varnothing 56$ mm
LEDSpot with one LED and with thermoplastic heat sink
Beam angle: 50°
Leads: Cu tinned, stranded conductors AWG22

$$
\text { PVC-insulation, length: } 250 \text { mm }
$$

Use of external LED constant-current drivers required Snap-in clips for easy installation
for luminaire sheets (type LCH-002 and -008)
for ceilings (type LCH-004 and -009)
Degree of protection: IP40
Unit:
90 pcs. (type LCH-002 and -008),
40 pcs. (type LCH-004 and -009)

LCH-002

LCH-008

50°

LCH-009

Type	Description	LEDSpot version for luminaire sheets	LEDSpot version for ceiling	Colour	Correlated colour temperature K	Luminous and po 350 mA min.	us flux (Im wer con A typ.	m) and ty sumption 500 mA min.	Luminous flux (Im) and typical voltage (Utyp.) and power consumption $\left(\mathrm{P}_{\mathrm{el}}\right)^{*}$	oltage (U 700 mA min.	Jtyp.) A typ.	Light intensity at max. current Candela	Frame round	shape square	Energy efficiency at max. current
						$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=0.98 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=2.8 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=1.48 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=2.17 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=3.1 \mathrm{~V} \end{aligned}$					
All types	XTE 3000K bin Q3	A	D	warm white	2870... 3200	79.8	88.0	103.7	114.4	135.7	149.6	210	round	square	A+
All types	XTE 4500K bin Q5	B	E	neutral white	4250... 4750	91.0	100.3	121.0	133.4	161.7	178.3	240	round	square	A+
All types	XTE 6000K bin R3	C	F	cool white	5000... 6950	103.7	114.3	139.7	152.1	184.4	203.3	270	round	square	A++

Emission data at $t_{i}=85^{\circ} \mathrm{C}$ | * Production tolerance of luminous flux, voltage and power consumption: $\pm 7 \%$

	For luminaire sheets (LCH-002 and LCH-008)						For ceilings (LCH-004 and LCH-009)					
Frame colour	Ref. No. A (warm white)		Ref. No. B (neutral white)		Ref. No. C (cool white)		Ref. No. D (warm white)		Ref. No. E (neutral white)		Ref. No. F (cool white)	
	round	square										
silver	548898	548363	548902	548369	548906	548375	548886	548418	547838	548429	548894	548435
silver mat	548899	-	548903	-	548907	-	548887	-	548891	-	548895	-
gold	548900	-	548904	-	548908	-	548888	-	548892	-	548896	-
white	548901	548366	548905	548372	548909	548378	548889	548424	548893	548432	548897	548438

LEDSpots for Residential and Furniture Lighting - Halogen Replacement

LEDSpot StartLine

Complete LEDSpot equipped with optics,

 heat sink, leads and frame
Technical notes

Frame, round: resin (LCH-015) or steel (LCH-O16)
For cut-out: $\varnothing 56$ mm
LEDSpot with one LED and with thermoplastic heat sink
Beam angle: 20° or 40°
Leads: Cu tinned, stranded conductors $0.5 \mathrm{~mm}^{2}$,

PVC-insulation, length: 250 mm
Use of external LED constant-current drivers required
Snap-in clips for easy installation
Degree of protection: IP20
Unit: 90 pcs.

LCH-016

Type	Description	LEDSpot version	Colour	Correlated colour temperature K	$350 \mathrm{~mA}$		and typ umption 500 m min.	al voltag Iyp.	$\begin{aligned} & \text { (Utyp.) } \\ & \begin{array}{l} 700 \mathrm{~m} \\ \text { min. } \end{array} \end{aligned}$	typ.	Light intensity at max. current Candela $20^{\circ} 140^{\circ}$		Energy efficiency at max. current
					$\begin{aligned} & \mathrm{P}_{\mathrm{el}}= \\ & \mathrm{U}_{\text {trye }} \end{aligned}$	$\begin{aligned} & \hline 02 \mathrm{~W} \\ & 2.9 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=1 . \\ & U_{\text {typ. }}= \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=2 . \\ & \mathrm{U}_{\text {typ. }}= \end{aligned}$				
All types	XBD Min Q2	A	warm white	2870... 3200	74.3	82.5	96.6	107.2	127.8	141.8	430	160	A+
All types	XBD Min Q4	B	neutral white	3850... 4250	85	93.9	110.5	122.1	146.2	161.6	520	220	A+
All types	XBD Min Q5	C	cool white	5250... 6250	91	100.3	118.2	130.2	156.4	172.5	600	230	A+

Emission data at $\mathrm{t}_{\mathrm{i}}=85^{\circ} \mathrm{C}$ | * Production tolerance of luminous flux, voltage and power consumption: $\pm 7 \%$

With resin frame (LCH-015)							With steel frame (LCH-016)						
Frame colour	Ref. No. A (warm white)		Ref. No. B (neutral white)		Ref. No. C (cool white)		Frame colour	Ref. No. A (warm white)		Ref. No. B (neutral white)		Ref. No. C (cool white)	
	20°	40°	20°	40°	20°	40°		20°	40°	20°	40°	20°	40°
silver mat	553424	553426	553429	553431	553433	553435	silver	553442	551758	553444	551748	553446	551750
white	553423	553425	553428	553430	553432	553434	white	553441	551757	553443	551747	553445	551749

Surface Kit with Mounted LEDSpot

Metal frame to use IPLine, SmartLine or StartLine as surface mounting spots
Two single pole terminals for electrical connection inside the kit (frame + spot)
Fixation by self tapping screws
Unit: 90 pcs.
Ref. No.: 554845 Frame colour: white
Ref. No.: 554843 Frame colour: silver

Surface Kit with LEDSpot StartLine

Colour temperature: 3000 K
Beam angle: 40°
Unit: 1 pcs.
Type: StartLine SFK LCHOl6
Ref. No.: 557621 Frame colour: white
Ref. No.: $\mathbf{5 5 7 1 5 7}$ Frame colour: silver

Surface Kit with LEDSpot SmartLine

LEDSpots for Residential and Furniture Lighting - Halogen Replacement

LEDSpot DiscLine

Complete LEDSpot equipped with optics,

 heat sink, leads and metal frame
Technical notes

Metal frame, round
LCH-006

For cut-out: $\varnothing 56$ mm
LEDSpot with one LED and with thermoplastic heat sink Reflector with clear glass (opaque glass on request)
Beam angle: 30° or 50°
Leads: Cu tinned, stranded conductors AWG22,
PVC-insulation, length: 250 mm
Use of external LED constant-current drivers required
Snap-in clips for easy installation
for luminaires sheets (type LCH-006)
for ceilings (type LCH-OO7)

Degree of protection: IP40
Unit:
90 pcs. (type LCH-006), 40 pcs. (type LCH-007)

30°
50°

Type	Description	LEDSpot version for luminaire sheet	LEDSpot version for ceiling	Colour	Correlated colour temperature K	Luminous and pow 350 mA min.	flux (Im er consu typ.	and typi mption 500 mA min.	al volta l\| typ.	$\text { e (} \left.U_{\text {typ. }}\right)$ $700 \mathrm{~mA}$ min.		Light intensity at max. current Candela		Energy efficiency at max. current
						$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=0.98 \mathrm{~W} \\ & U_{\text {typ. }}=2.8 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\mathrm{el}}=1.48 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=3 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{P}_{\mathrm{el}}=2.17 \mathrm{~W} \\ & \mathrm{U}_{\text {typ. }}=3.1 \mathrm{~V} \end{aligned}$				
All types	XTE 3000K min Q3	A	D	warm white	2870... 3200	79.8	88.0	103.7	114.4	135.7	149.6	290	170	A+
All types	XTE 4500K min Q5	B	E	neutral white	4250... 4750	91.0	100.3	121.0	133.4	161.7	178.3	360	190	A++
All types	XTE 6000K min R3	C	F	cool white	5000... 6950	103.7	114.3	139.7	152.1	184.4	203.3	370	210	A++

Emission data at $t_{\mathrm{i}}=85^{\circ} \mathrm{C} \mid$ * Production tolerance of luminous flux, voltage and power consumption: $\pm 7 \%$

	For luminaire sheets (LCH-006)						For ceilings (LCH-007)					
Frame colour	Ref. No. A (warm white)		Ref. No. B (neutral white)		Ref. No. C (cool white)		Ref. No. D (warm white)		Ref. No. E (neutral white)		Ref. No. F (cool white)	
	30°	50°										
silver	548769	548782	548944	548948	548775	548788	548794	548806	548952	548956	548800	548812
silver brushed	548771	548784	554907	554908	548777	548790	548796	548808	554910	554911	548802	548814
white	548772	548785	548947	548951	548778	548791	548797	548809	548955	548959	548803	548815

LEDSpots for Residential and Furniture Lighting - Halogen Replacement

LEDSpot EffectLine XTE

Complete LEDSpot equipped with optics,

 heat sink, leads and metal frame
Technical notes

Metal frame, round or square
For cut-out: $\varnothing 37$ mm
LEDSpot with one LED and with thermoplastic heat sink
Beam angle: $8^{\circ}, 16^{\circ}, 26^{\circ}$ or 45°
Leads: Cu tinned, stranded conductors AWG22,
PVC-insulation, length: 250 mm
Use of external LED constant-current drivers required
Snap-in clips for easy installation
Degree of protection: IP20
Unit: 45 pcs.

LCH-010

LCH-011

8°
16°

45°

Type	Description	LEDSpot version	Colour	Correlated colour temperature K	Lumino and p 350 m min.	flux (wer co typ.	and typ umption 500 mA min.	cal volt Pel)* typ.	$\text { ge }\left(U_{\text {typ }}\right.$ $700 \mathrm{~mA}$ $\min .$	typ.	Cande 8°	ensitya a 16°	max. 126°	current 45°	Energy efficiency at max. current
					$\begin{aligned} & \mathrm{P}_{\mathrm{el}}= \\ & \mathrm{U}_{\text {typ. }} \end{aligned}$	$\begin{aligned} & 8 \mathrm{~W} \\ & 8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & P_{\text {el }}= \\ & U_{\text {typ. }}= \end{aligned}$	$\begin{aligned} & 8 \mathrm{~W} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & P_{\text {el }}=2 \\ & U_{\text {typ. }}= \end{aligned}$	$\begin{aligned} & 17 \mathrm{~W} \\ & 3.1 \mathrm{~V} \end{aligned}$					
All types	XTE 3000K bin Q3	A	warm white	2870... 3200	84.5	93.2	109.9	121.1	163.7	158.4	1160	880	460	260	A+
All types	XTE 4500K bin Q4	B	neutral white	4250... 4750	90.0	99.4	117.0	129.3	153.0	169.0	1200	900	490	280	A++

Emission data at $t_{j}=85^{\circ} \mathrm{C} \mid{ }^{*}$ Production tolerance of luminous flux, voltage and power consumption: $\pm 7 \%$

Frame colour	Ref. No. A (warm white)								Ref. No. B (neutral white)							
	round				square				round				square			
	8°	16°	26°	45°												
silver	554912	554914	548964	548960	554921	554923	548966	548962	554916	554918	548965	548961	554925	554927	548967	548963
white	554913	554915	552398	552399	554922	554924	552406	552407	554917	554919	552400	552401	554926	554928	552408	552409

LEDSpots for Residential and Furniture Lighting - Halogen Replacement

LEDSpot Sets

On request, you will receive complete sets that contain the desired number of LEDSpots, a respective number of cable sets and the required LED drivers. Several examples of such sets can be seen to the right

Contact us - we will gladly support you when it comes to dimensioning your lighting application.

Set No.	Ref. No.	Sets includes LEDSpot	Beam angle	Frame		Driver	Lead set
1	554529	1 piece LEDSpot ActiveLine LUGA Pro 3000 K	40°	round	silver	186350	inclusive
	554530	2 pieces ActiveLine LUGA Pro 3000 K				186353	
2	554532	1 piece ActiveLine 600 Pro 3000 K				186342	
	554533	2 pieces ActiveLine 600 Pro 3000 K				186294	
3	554534	2 pieces Smartline COB 3000 K				186341	
4	554535	2 pieces Startline 3000 K				186348	

LEDSpots for Residential and Furniture Lighting - Halogen Replacement

Lead sets

For LEDSpots with connectors

Lead sets with connector
for easy and fast connection
Connector material: PA, natural, UL94V-0
Leads: Cu tinned, stranded conductors $0.5 \mathrm{~mm}^{2}$,
PVC-insulation, with connector,
lead ends: ferrules on bare end of core
545029

546388

Lead sets

Lead sets with connector and lead ends Leads: HO3VVH2-F
Weight: 18/36/58/90 g, unit: 10 pcs.
Ref. No.: 545029
Ref. No.: 546388
Ref. No.: 545315
Ref. No.: 554929
with 1 connector with 2 connectors with 3 connectors

Ref. No.: 545316 with 5 connectors

545315

554929

545316

LEDLINE ECX

ELECTRONIC CONSTANT CURRENT DRIVERS

LED CONSTANT CURRENT DRIVERS

Electronic converters for LED modules operated with constant current LED drivers

To ensure the safe operation of LEDs that are wired in series, the operating current must be limited to a constant value by the LED driver.

Light-emitting diodes are semiconductor devices with a light-emitting p-n junction. Due to the specific diode characteristics, the current can only flow through an LED in one direction. Coupled with the special properties of a semiconductor, this non-linear behaviour can increase the current and power uptake of an LED as it heats up.

If this effect is not limited, uncontrolled heating can finally destroy the semiconductor junction. For this reason, VS recommends using an external constant current driver to operate all constant current driven LED modules. To ensure that the same current flows through every LED, constant current driven LED modules can only be wired in series.

The constant current source has to be selected to suit the respective application, i.e. it must supply the required current and also provide sufficient voltage for the LED string.

The number of VS LED modules that can be connected to a single operating device is dependent on the forward voltage of the respective modules.

LEDLine ECX

- OVERLOAD PROTECTION

■ SHORT CIRCUITING PROTECTION

- SELV OR SELV EQUIVALENT

Product Classification and Overview of LED Drivers

The electronic constant current drivers are optimised to operate constant current driven LED modules. Before connecting LED modules ensure that the power supply is disconnected from mains.

Most converters are designed for DC-operation (mains frequency: OHz) and can be used for emergency power supplies.

Up to 100,000 hrs. expected service life time

ComfortLine

Comfortable
Many dimming options

左

\author{

EasyLine

 Cost-efficient
 Approved VS quality
 Up to 100,000 hrs. expected service life time
 octed}

PrimeLine

Intelligent
Digital networking and control Up to 100,000 hrs. expected service life time Maximum flexibility

Product overview by main application fields								
Main application field	Capacity range W	Output current DC mA	Ref. No.	Version	Current setting	Dimming	Max. service lifetime hrs.	Page
Office	4×9	4×60	186384	Comfortline	-	DALI, PUSH	100,000	143
			186305	Comfortline	-	-	100,000	147
	15	350	186229	Comfortline	-	-	100,000	149
	2×20	2×350	186407	Comfortline	-	1-10 V	100,000	144
			186406	Comfortline	-	-	100,000	147
	27.5/33/38.5	125/150/175	186486	Comfortline	Push-in terminal	-	100,000	145
	2×28.5/2×40	2x500/2×700	186410	Comfortline	Dip switch	1-10 V	100,000	144
			186409	Comfortline	Dip switch	-	100,000	147
	40	350/500/700	186444	ComfortLine	Push-in terminal	-	100,000	146
	42	350-700	186446	Primeline	Programmable	DALI, PUSH	100,000	141
		350	186414	Easyline	-	-	50,000	150
	44/47	200/225/250	186487	Comfortline	Push-in terminal	-	100,000	145
	47	275/300/325	186488	Comfortline	Push-in terminal	-	100,000	145
	60	700	186429	Easyline	-	-	50,000	150
	2×70	2x700	186356	Comfortine	-	DALI, PUSH	100,000	142
			186355	Comfortline	-	1-10 V	100,000	144
			186354	Comfortline	-	-	100,000	147
	77/84	350-700	186445	Primeline	Programmable	DALI, PUSH	100,000	141
	79/85	350/500/700	186443	Comfortline	Push-in terminal	-	100,000	146
	85	375/400/425	186491	Comfortine	Push-in terminal	-	100,000	145
		550/600/650	186492	Comfortline	Push-in terminal	-	100,000	145
	107	500	186460	Comfortline	-	DALI, PUSH	100,000	143
			186315	Comfortline	-	-	100,000	148
$\overline{\text { Retail }}$	10/14/20	250/350/500	186463	Easyline	Push-in terminal	-	50,000	158
	15/18/21	500/600/700	186464	Easyline	Push-in terminal	-	50,000	158
	24	350-700	186465	Primeline	Programmable	DALI, PUSH	100,000	151
	24	700	186280	Comfortline	-	DALI, PUSH	100,000	152
			186279	Comfortline	-	1-10 V	100,000	154
			186278	Comfortline	-	-	100,000	155
	25	500	186363	Easyline	-	-	50,000	159
	34	700	186177, 186195	Comfortine	-	DALI, PUSH	100,000	153
	35	700	186364	Easyline	-	-	50,000	159
		1050	186365	Easyline	-	-	50,000	159
	37	350-700	186503	Primeline	Programmable	DALI, PUSH	100,000	151
		700	186308	Comfortine	-	DALI, PUSH	100,000	152
			186306	Comfortline	-	-	100,000	155
	40	700	186221, 186222	Comfortline	-	DALI, PUSH	100,000	153
			186266, 186267	Comfortline	-	-	100,000	156
			186330, 186331	Comfortline	-	-	100,000	157
	51.3	900	186386, 186387	Comfortline	-	-	100,000	157
	60	1050	186196, 186197	Comfortline	-	DALI, PUSH	100,000	153
			186268, 186269	Comfortline	-	-	100,000	156
			186328, 186329	Comfortline	-	-	100,000	157

Product overview by main application fields								
Main application field	Capacily range W	$\begin{aligned} & \text { Output current DC } \\ & \mathrm{mA} \end{aligned}$	Ref. No.	Version	Current sefting	Dimming	Max. service lifetime hrs.	Page
Residential	5.2	700	186458	Easyline	-	-	50,000	164
	5.6	700	186348	Easyline	-	-	50,000	165
	6	150	186447	Easyline	-	L,C	50,000	163
	7	350	186342	Easyline	-	-	50,000	165
	8	350	186180	Comfortline	-	-	100,000	161
	10	500	186448	Easyline	-	L,C	50,000	163
	11	350	186424	Comfortline	-	-	100,000	161
	12	250	186449	Easyline	-	L,C	50,000	163
	12.6	350	186341	Easyline	-	-	50,000	166
	15	500	186349	Easyline	-	-	50,000	166
	16	500	186425	Comfortline	-	-	100,000	161
	17	700	186426	Comfortline	-	-	100,000	161
	18	350	186415	Easyline	-	L,C	50,000	163
		700	186450	Easyline	-	L,C	50,000	163
	20	1050	186427	Comfortline	-	-	100,000	161
		350	186431	Easyline	-	-	50,000	166
	20.3	700	186350	Easyline	-	-	50,000	166
	25	700	186416	Easyline	-	L,C	50,000	163
	25.2	700	186353	Easyline	-	-	50,000	166
	30	700	186393	Comfortline	-	L,C	100,000	160
		350	186430	Easyline	-	-	50,000	167
	31.5	1050	186351	Easyline	-	-	50,000	167
	32	1050	186479	Comfortline	-	-	100,000	162
	36	1050	186394, 186395	Comfortline	-	L,C	100,000	160
		700	186451	Easyline	-	L,C	50,000	163
Street	40	700	186490	Comfortline	-	1-10 V	100,000	171
			186489	Comfortline	-	-	100,000	174
	42	350	186175	Comfortline	-	-	100,000	176
	60	1050	186316	Comfortline	-	1-10 V	100,000	170
	75	700	186400	Comfortline	-	1-10 V	100,000	169
		$700 / 400$	186397	Comfortline	-	Power reduction	100,000	173
	82/90/90	700/1000/1400	186367	Primeline	Dip switch/DALI	DALI, PUSH, MidNight	100,000	168
	100	700	186401	Comfortline	-	1-10 V	100,000	169
		700 / 400	186398	Comfortline	-	Power reduction	100,000	173
	150	700	186402	Comfortline	-	1-10 V	100,000	169
		700 / 400	186202, 186203	Comfortline	-	Power reduction	100,000	172
			186509	Comfortline	-	Power reduction	100,000	173
		700	186399	Comfortline	-	-	100,000	175
Industry	$\begin{aligned} & 19.95 / 28.5 / \\ & 34.2 / 39.9 \end{aligned}$	$\begin{aligned} & 350 / 500 / \\ & 600 / 700 \end{aligned}$	186326, 186327	Comfortline	Rotary switch	1-10 V	100,000	179
	$\begin{aligned} & 38.7 / 45.1 / \\ & 51.6 / 60.2 \end{aligned}$	$\begin{aligned} & 900 / 1050 / \\ & 1200 / 1400 \end{aligned}$	186208	Comfortline	Rotary switch	1-10 V	100,000	178
	50	700	186452	Easyline	-	-	50,000	181
	75	1050	186453	Easyline	-	-	50,000	181
	100	1400	186454	Easyline	-	-	50,000	181
	112	700	186299, 186300	Comfortline	-	DALI, PUSH	100,000	177
			186297, 186298	Comfortline	-	-	100,000	180
	125	1700	186455	Easyline	-	-	50,000	181
	126	1050	186303, 186304	Comfortline	-	DALI, PUSH	100,000	177
			186301,186302	Comfortline	-	-	100,000	180
	150	2100	186456	Easyline	-	-	50,000	181
	175	2400	186510	Easyline	-	-	50,000	181
	200	2800	186477	Easyline	-	-	50,000	181
	230	3200	186478	Easyline	-	-	50,000	181
Accessories								
iProgrammer	Ref. No. 186428	The iProgrammer is	signed to let you contig	LED drivers u	the 3C function.			182

PrimeLine LED Drivers
 - with Selectable Current

350-700 mA,
max. 42 W and max. 84 W
The linear LED constant-current drivers are designed for use in office and retail lighting.

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: 0.97
Stand-by losses: < 0.5 W

Dimming

The dimming function is achieved by applying
a PWM signal to the nominal current.
Dimming range: 3 to 100%.
If no dimming interface is connected, brightness
will stay at 100%.

Programmability

The output current can be freely adjusted
in 1 mA steps between 350 mA and 700 mA (factory setting: 350 mA).
An iProgrammer (Ref. No. 186428) and
a PC running the respective VS software are required for programming purposes.

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Push-in terminals: $0.2-1.5 \mathrm{~mm}^{2}$

Safety features

Electronic short-circuit protection
Overtemperature protection
Protection against "no load" operation
Degree of protection: IP20
Protection class I

Products under development; preliminary technical datas

Max. output	Type	Ref. No.	Mains voltage $50-60 \mathrm{~Hz}$	Mains current	Current output DC programmable	Voltage output*	Max. voltage without load	Efficiency at	Ambient temperature	Casing temperature	Weight
						DC	DC	full load			
W			V	mA	mA			\% (230 V)			

M10 - Dimensions: $\mathbf{3 5 9 \times 3 0 \times 2 1 ~ m m}$

M10 - Dimensions: $\mathbf{3 5 9 \times 3 0 \times 2 1} \mathbf{~ m m}$
42
72
77
84

* Depends on the adjusted current output

Expected service life time

at operation temperatures at t_{c} point

Operation current	Ref. No. 186446			186445
cull	$60^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
hrs.	50,000	100,000	50,000	100,000

ComfortLine LED

Drivers - Dimmable

$2 \times 700 \mathrm{~mA} / \max .2 \times 70 \mathrm{~W}$

The linear LED constant-current drivers are designed
for use in office and retail lighting

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: 0.95
Stand-by losses: < 0.5 W

Dimming

The dimming function is achieved by applying a PWM signal to the nominal current.
Dimming range: 3 to 100\%.
If no dimming interface is connected, brightness will stay at 100%.

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
DC operation: 198-264 V DC, 0 Hz
(can be reduced to 176 V with reduced
service life time)
Push-in terminals: 0.2-1.5 mm²

Safety features

Expected service life time
at operation temperatures at t_{c} point

Electronic short-circuit protection
Overload and overtemperature protection
Protection against "no load" operation
Degree of protection: IP20
Protection class I
SELV

Max. output W	Type	Ref. No.	Mains voltage $\left\lvert\, \begin{aligned} & 0 \mathrm{~Hz}, \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}\right.$	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC V	Efficiency at full load $\% ~(230 ~ V) ~$	Ambient temperature ${ }^{\text {ta }}$ ${ }^{\circ} \mathrm{C}$	Casing temperature ${ }^{+}{ }_{c}$ ${ }^{\circ} \mathrm{C}$	Weight g
M12-Dimensions: $\mathbf{3 5 9 \times 4 0 \times 2 1 ~ m m ~}$											
2x70	ECXd 2700.089	186356	198-264	834-625	$2 \times 700 \pm 5 \%$	42-100	< 120	> 90	-20 to 50	80	400
			220-240	750-688							

Comfortline LED
 Drivers - Dimmable

$4 \times 60 \mathrm{~mA} / \max .4 \times 9 \mathrm{~W}$
350 mA / max. 75 W
500 mA / max. 107 W
The linear LED constant-current drivers are designed
for use in office and retail lighting.

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: > 0.95
Stand-by losses: $<0.5 \mathrm{~W}$

Dimming

Expected service life time

at operation temperatures at tc point

Operation current	Ref. No.					
all types			$	$	all	$70^{\circ} \mathrm{C}$
:---	:---					
$60^{\circ} \mathrm{C}$						
hrs.	50,000					

The dimming function is achieved by applying
a PWM signal to the nominal current.
Dimming range: 3 to 100\%.
If no dimming interface is connected, brightness
will stay at 100%.

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
DC operation: 198-264 V DC, 0 Hz
Push-in terminals: 0.2-1.5 mm²

Safety features

Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP20
Protection class I

Max. output W	Type	Ref. No.	Mains voltage $\begin{aligned} & 0 \mathrm{~Hz}, \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC V	Efficiency at full load \% (230 V)	Ambient temperature t_{a} ${ }^{\circ} \mathrm{C}$	Casing temperature ${ }^{\mathrm{t}} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$	Weight g
M10 - Dimensions: $\mathbf{3 5 9 \times 3 0 \times 2 1 ~ m m ~}$											
4×9	ECXd 460.110	186384	198-264	190-140	$4 \times 60 \pm 5 \%$	55-150	< 450	> 91	-25 to 65	70	230
			220-240	170-150							
107	ECXd 500.163	186460	198-264	557-412	500 + $5 /-10 \%$	90-215	< 450	> 90	-20 to 50	70	220
			220-240	502-460							

ComfortLine LED Drivers - Dimmable

$2 \times 350 \mathrm{~mA} / \max .2 \times 20 \mathrm{~W}$
$2 \times 500 \mathrm{~mA} / \max .2 \times 28.5 \mathrm{~W}$
$2 \times 700 \mathrm{~mA} / \max .2 \times 40 \mathrm{~W}$
and max. $2 \times 70 \mathrm{~W}$

The linear LED constant-current drivers are designed
for use in office and retail lighting.

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: 0.95

Dimming

The dimming function is achieved by applying a PWM signal to the nominal current (M 12) or with an analogue dimming signal ($\mathrm{M} 10 / \mathrm{M} 11$). Dimming range: 3 to 100%.
If no dimming interface is connected, brightness will stay at 100%.

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
DC operation: 198-264 V DC, 0 Hz
(can be reduced to 176 V with reduced
service life time)
Push-in terminals: 0.2-1.5 mm²

Safety features

Electronic short-circuit protection
Overload and overtemperature protection
Protection against "no load" operation
Degree of protection: IP20
Protection class I
SELV

Expected service life time

at operation temperatures at t_{c} point \qquad

Operation current	Ref. No. 186407							186410	186355
$2 \times 350 \mathrm{~mA}$	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	-	-	-	-			
$2 \times 500 \mathrm{~mA}$	-	-	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	-	-			
$2 \times 700 \mathrm{~mA}$	-	-	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$			
hrs.	50,000	100,000	50,000	100,000	50,000	100,000			

M10/M11

M 12

Max. output W	Type	Ref. No.	Mains voltage $\left\lvert\, \begin{aligned} & 0 \mathrm{~Hz}, \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}\right.$	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC V	$\begin{aligned} & \text { Efficiency } \\ & \text { at } \\ & \text { full load } \\ & \%(230 \mathrm{~V}) \end{aligned}$	Ambient temperature ${ }^{\mathrm{t}} \mathrm{a}_{-}$ ${ }^{\circ} \mathrm{C}$	Casing temperature ${ }^{\circ} \mathrm{c}$ ${ }^{\circ} \mathrm{C}$	Weight g
M10-Dimensions: $\mathbf{3 5 9 \times 3 0 \times 2 1 \mathrm { mm }}$											
2×20	ECXd 2350.124	186407	198-264	500-340	$2 \times 350 \pm 5 \%$	17-57	42	> 85	-20 to 50	75	270
			220-240	400-370							
M11-Dimensions: $\mathbf{4 2 5 \times 3 0 \times 2 1 ~ m m}$											
2x28,5/	ECXd 2700.127	186410	198-264	260-175	$\begin{aligned} & 2 \times 500 \pm 5 \% / \\ & 2 \times 700 \pm 5 \% \end{aligned}$	17-57	60	> 88	-20 to 50	75	310
2×40			220-240	200-190							
M12-Dimensions: 359×40×21 mm											
2×70	ECXd 2700.088	186355	198-264	834-625	$2 \times 700 \pm 5 \%$	42-100	120	> 90	-20 to 50	80	400
			220-240	750-688							

Comfortline LED
 Drivers - with

Selectable Current
125 to $\mathbf{6 5 0} \mathbf{~ m A} / 27.5 \mathbf{W}$ to 85.1 W
The linear LED constant-current drivers are designed for use in office and retail lighting.

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: 0.97

Selectable current output

The required current output can be chosen by selecting the respective pin at the output terminal.

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$

Expected service life time

at operation temperatures at t_{c} point

Operation current	Ref. No.186486		186487		186488		186491		186492	
350 mA	$55^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$
500 mA	$55^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
700 mA	$55^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
hrs.	50,000	100,000	50,000	100,000	50,000	100,000	50,000	100,000	50,000	100,000

Push-in terminals: 0.2-1.5 mm²

Safety features

Electronic short-circuit protection
Overtemperature protection
Protection against "no load" operation
Degree of protection: IP20
Protection class I

Comfortline LED
 Drivers - with

Selectable Current

350/500/700 mA,

 max. 40 W and max. 85 WThe linear LED constant-current drivers are designed
for use in office and retail lighting.

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: 0.97

Selectable current output

The required current output can be chosen by selecting the respective pin at the output terminal

Expected service life time

at operation temperatures at t_{c} point

Operation current	Ref. No. 186444			186443
350 mA	$60^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
500 mA	$65^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
700 mA	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
hrs.	50,000	100,000	50,000	100,000

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Push-in terminals: 0.2-1.5 mm²

Safety features

Electronic short-circuit protection
Overtemperature protection
Protection against "no load" operation
Degree of protection: IP20

Protection class I

Max. output W	Type	Ref. No.	Mains voltage $\underbrace{50-60 \mathrm{~Hz}}_{V} \mathrm{~V}$	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC V	Efficiency at full load $\%(230 \mathrm{~V})$	Ambient temperature ta ${ }^{\circ} \mathrm{C}$	Casing temperature ${ }^{+} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$	Weight g
M10-Dimensions: $\mathbf{3 5 9 \times 3 0 \times 2 1 ~ m m}$											
40	ECXe 700.148	186444	220-240	400-370	$350 \pm 5 \%$	57-114	< 250	> 90	-25 to 50	60	227
				420-390	$500 \pm 5 \%$	40-80		>89		65	
				420-390	$700 \pm 5 \%$	28-57		> 88		70	
79	ECXe 700.147	186443	220-240	200-190	$350 \pm 5 \%$	120-225	< 250	> 94	-25 to 50	70	250
85				205-190	$500 \pm 5 \%$	80-170		> 93		75	
				210-195	$700 \pm 5 \%$	60-120		>92		80	

ComfortLine
 LED Drivers

$2 \times 350 \mathrm{~mA} / \max .2 \times 20 \mathrm{~W}$ $2 \times 500 \mathrm{~mA} / \max .2 \times 28.5 \mathrm{~W}$
$2 \times 700 \mathrm{~mA} / \max .2 \times 40 \mathrm{~W}$ and max. $2 \times 70 \mathrm{~W}$
The linear LED constant-current drivers are designed
for use in office and retail lighting.

Electrical characteristics

Secondary side switching of LED modules
is not allowed.
Power factor at full load: 0.95

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
DC operation: 198-264 V DC, 0 Hz
(can be reduced to 176 V with reduced
service life time)

Expected service life time

at operation temperatures at tc point

Operation current	Ref. No. 186406			186409	186354	
$2 \times 350 \mathrm{~mA}$	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	-	-	-	-
$2 \times 500 \mathrm{~mA}$	-	-	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	-	-
$2 \times 700 \mathrm{~mA}$	-	-	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
hrs.	50,000	100,000	50,000	100,000	50,000	100,000

M10/M11

M12

Max.
output

\mathbf{W}

ComfortLine

LED Drivers

$4 \times 60 \mathrm{~mA} / \max .4 \times 9 \mathrm{~W}$
350 mA / max. 75 W
500 mA / max. 107 W
The linear LED constant-current drivers are designed
for use in office and retail lighting.

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: > 0.95

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$

Expected service life time

at operation temperatures at ${ }^{t} c$ point

Operation current	Ref. No. all types	
all	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
hrs.	50,000	100,000

Mains frequency: $50-60 \mathrm{~Hz}$
DC operation: 176/198-264 V DC, 0 Hz

> (except 186305)

Push-in terminals: 0.2-1.5 mm²

Safety features

Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP20
Protection class I
M6. 1

Max.	Type	Ref. No.	Mains voltage	Mains	Current	Voltage	Max. voltage	Efficiency	Ambient	Casing	Weight
output			OHz ,	current	output	output	without load		temperature	temperature	
			$50-60 \mathrm{~Hz}$		DC	DC	DC	full load			
W			V	mA	mA		V	\% (230 V)	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	g

M6.1 - Dimensions: $230 \times 30 \times 20.9 \mathrm{~mm}$

4×9	ECXe 460.061	186305	-	-	$4 \times 60 \pm 5 \%$	110-150	450	> 88	-20 to 60	70	156
			220-240	180-165							

M10-Dimensions: $\mathbf{3 5 9 \times 3 0 \times 2 1 ~ m m}$

107	ECXe 500.068	186315	198-264	650-410	$500 \pm 5 \%$	90-215	450	> 94	-25 to 50	70	273
			220-240	520-440							

LED Constant Current Drivers - Office

ComfortLine

LED Drivers

350 mA / max. 15 W

The linear LED constant-current drivers are designed for use in office and retail lighting.

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: 0.6

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
DC operation: $176-264 \mathrm{~V}$ DC, 0 Hz
Push-in terminals: 0.2-1.5 mm²

Expected service life time

at operation temperatures at t_{c} point

Operation current	Ref. No. 186229	
350 mA	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
hrs.	50,000	100,000

K21
Degree of protection: IP20

Protection class II

SELV

Safety features

Electronic short-circuit protection
Overload protection

Max. output W	Type	Ref. No.	Mains voltage $\left\lvert\, \begin{aligned} & \mathrm{OHz} \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}\right.$	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC V	Efficiency at full load \% (230 V)	Ambient temperature ta ${ }^{\circ} \mathrm{C}$	Casing temperature \dagger_{c} ${ }^{\circ} \mathrm{C}$	Weight 9
K21- Dimensions: $146.7 \times 21 \times 18$ mm											
15	ECXe 350.031	186229	176-264	140-90	$350+5 /-10 \%$	2-40	42	> 81	-20 to 50	80	49
			220-240	81-75							

LED Constant Current Drivers - Office

EasyLine LED Drivers

350 mA / max. 42 W

700 mA / max. 60 W
The linear LED constant-current drivers are designed for use in office and retail lighting.

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: > 0.9

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Push-in terminals: 0.2-1.5 mm²

Safety features

Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP20
Protection class I

SELV (186429)

Expected service life time

at operation temperatures at t_{c} point

Operation current	Ref. No. 186414			
350 mA	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	-	-
700 mA	-	-	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
hrs.	30,000	50,000	30,000	50,000

Max.	Type	Ref. No.	Mains voltage	Mains	Current	Voltage	Max. voltage	Efficiency	Ambient	Casing	Weight
output			$50-60 \mathrm{~Hz}$	current	output	output	without load		temperature	temperature	
					DC	DC	DC	full load			
W			V	mA	mA	V	V	\% (230 V)	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	g

M7.1 - Dimensions: $\mathbf{2 8 0 \times 3 0 \times 2 1 ~ m m}$

42	ECXe 350.129	186414	220-240	220-200	$350 \pm 5 \%$	80-120	< 130	> 88	- 15 to 45	70	200
60	ECXe 700.140	186429	220-240	305-275	$700 \pm 5 \%$	46-86	< 95	> 89	- 15 to 45	75	

PrimeLine LED Drivers - with Selectable Current

350-700 mA / max. 24 W and max. 37 W
Compact casing shape with integrated cord grip optional for built-in or independent operation.

Electrical characteristics

Secondary side switching of LED modules is allowed (hot wiring).
Power factor at full load: > 0.9
Stand-by losses: $<0.5 \mathrm{~W}$

Dimming

The dimming function is achieved by applying a PWM signal to the nominal current.
Dimming range: 1 to 100%.
If no dimming interface is connected, brightness will stay at 100%.

Programmability

The output current can be freely adjusted in 1 mA steps between 350 mA and 700 mA (factory setting: 350 mA). An iProgrammer (Ref. No. 186428) and a PC running the respective VS software are required for programming purposes.

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
DC operation: 198-264 V DC, 0 Hz
(can be reduced to 176 V with reduced
service life time)
With integrated through-wiring
Push-in terminals: 0.2-1.5 mm²

Safety features

Electronic short-circuit protection
Overload and overtemperature protection
Protection against "no load" operation
Degree of protection: IP20

Protection class II

SELV

Expected service life time

at operation temperatures at t_{c} point

K2.1

K3.2

Max. output W	Type	Ref. No.	Mains voltage $\begin{aligned} & 0 \mathrm{~Hz}, \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Mains current mA	Current output DC programmable mA	Voltage output DC V	Max. voltage without load DC V	Efficiency at full load \% (230 V)	Ambient temperature ta ${ }^{\circ} \mathrm{C}$	Casing temperature ${ }^{\dagger} \mathrm{c}$ ${ }^{\circ} \mathrm{C}$	Weight
K2.1- Dimensions: $103.6 \times \mathbf{6 7 \times 3 1 ~ m m}$											
24	ECXd 700.166	186465	198-264	160-100	$350-700 \pm 5 \%$	14-34	< 45	> 84	-25 to 50	75	145
			220-240	130-120							
K3.2- Dimensions: $123.4 \times \mathbf{7 9 . 4 \times 3 2 . 6 ~ m m ~}$											
37	ECXd 700.184	186503	198-264	235-155	$350-700 \pm 5 \%$	30-53	< 60	> 87	-25 to 50	75	190
			220-240	200-180							

ComfortLine LED Drivers - Dimmable

$700 \mathrm{~mA} / \max .24 \mathrm{~W}$ and max. 37 W
Compact casing shape with integrated cord grip optional for built-in or independent operation.

Electrical characteristics

Secondary side switching of LED modules is allowed (hot wiring).
Power factor at full load: > 0.9
Stand-by losses: < 0.5 W

Dimming

During dimming operations, the driver can be controlled via DALI-compatible controllers or conventional light switches (PUSH).
The dimming function is achieved by applying
a PWM signal to the nominal current.
Dimming range: 1 to 100%.
If no dimming interface is connected, brightness
will stay at 100%.

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
DC operation: 198-264 V DC, 0 Hz
(can be reduced to 176 V with reduced
service life time)
With integrated through-wiring
Push-in terminals: $0.2-1.5 \mathrm{~mm}^{2}$

Safety features

Electronic short-circuit protection
Overload and overtemperature protection
Protection against "no load" operation
Degree of protection: IP20

Protection class II

SELV

Expected service life time

at operation temperatures at t_{c} point

Operation current	Ref. No. all types	
all	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
hrs.	50,000	100,000

K2.1

K3.2

Max.	Type	Ref. No.	Mains voltage	Mains	Current	Voltage	Max. voltage	Efficiency	Ambient	Casing	Weight
output			0 Hz ,	current	output	output	without load		temperature	temperature	
			$50-60 \mathrm{~Hz}$		DC	DC	DC	full load			
W			V	mA	mA	V	V	\% (230 V)	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	g

K2.1- Dimensions: $103.6 \times 67 \times 31 \mathrm{~mm}$											
24	ECXd 700.044	186280	198-264	160-100	$700 \pm 5 \%$	14-34	< 45	> 84	-25 to 50	75	145
			220-240	130-120							
K3.2 - Dimensions: $\mathbf{1 2 3 . 4 \times 7 9 . 4 \times 3 2 . 6 ~ m m ~}$											
37	ECXd 700.064	186308	198-264	235-155	$700 \pm 5 \%$	30-53	< 60	> 87	-25 to 50	75	190
			220-240	200-180							

ComfortLine LED

 Drivers - Dimmable$700 \mathrm{~mA} /$ max. 34 W and max. 40 W , 1050 mA / max. 60 W

Electrical characteristics

Secondary side switching of LED modules is not allowed.

Power factor at full load: 0.97
Stand-by losses: < 0.5 W

Dimming

The dimming function is achieved by applying
a PWM signal to the nominal current.
Dimming range: 0.5 to 100%.
If no dimming interface is connected, brightness
will stay at 100%.

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
DC operation: 176-264 V DC, 0 Hz
Push-in terminals: 0.2-1.5 mm²

Safety features

Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP20
Protection class I

SELV equivalent

K3

K3 with cord grip

Expected service life time

at operation temperatures at tc point

Operation current	Ref. No. all types	
700	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
1050	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
hrs.	50,000	100,000

K3 with cord grip - Dimensions: $159 \times 79 \times 33 \mathrm{~mm}$

Max. output W	Type	Ref. No.	Mains voltage 0 Hz, $50-60 \mathrm{~Hz}$ V	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC V	$\begin{aligned} & \text { Efficiency } \\ & \text { at } \\ & \text { full load } \\ & \%(230 \mathrm{~V}) \end{aligned}$	$12 \mathrm{~V}$ interface max. 2 W	Ambient temperature ${ }^{\dagger_{a}}{ }^{\circ} \mathrm{C}$	Casing temperature ${ }^{t} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$	Weight g
K3-Dimensions: $123 \times 79 \times 33 \mathrm{~mm}$												
34	ECXd 700.017	186177	176-264	230-160	$700 \pm 5 \%$	9-48	52	> 85	no	-20 to 50	75	180
			220-240	190-170								
40	ECXd 700.026	186221	176-264	280-185	$700 \pm 5 \%$	20-57	60	> 85	yes	-20 to 50	75	186
			220-240	230-200								
60	ECXd 1050.020	186196	176-264	380-252	1050 $\pm 5 \%$	20-57	60	> 85	yes	-20 to 50	80	220
			220-240	305-275								
K3 with cord grip - Dimensions: $159 \times 79 \times 33 \mathrm{~mm}$												
34	ECXd 700.017	186195	176-264	230-160	$700 \pm 5 \%$	9-48	52	> 85	no	-20 to 50	75	215
			220-240	190-170								
40	ECXd 700.026	186222	176-264	280-185	$700 \pm 5 \%$	$20-57$	60	>85	yes	-20 to 50	75	223
			220-240	230-200								
60	ECXd 1050.020	186197	176-264	380-252	1050 $\pm 5 \%$	20-57	60	>85	yes	$-20 \text { to } 50$	80	250
			220-240	305-275								

Comfortline LED

Drivers - Dimmable

700 mA / max. 24 W

Compact casing shape with integrated cord grip optional for built-in or independent operation.

Electrical characteristics

Secondary side switching of LED modules is allowed (hot wiring).
Power factor at full load: > 0.9

Dimming

The dimming function is achieved by applying
a PWM signal to the nominal current.
Dimming range: 1 to 100%.
If no dimming interface is connected, brightness will stay at 100%.

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
DC operation: 198-264 V DC, 0 Hz
(can be reduced to 176 V with reduced
service life time)
With integrated through-wiring
Push-in terminals: $0.2-1.5 \mathrm{~mm}^{2}$

Safety features

Electronic short-circuit protection
Overload and overtemperature protection
Protection against "no load" operation
Degree of protection: IP20
Protection class II
SELV

Expected service life time

Operation current	$\begin{array}{\|l\|} \hline \text { Ref. No. } \\ 186279 \end{array}$	
700	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
hrs.	50,000	100,000

K2.1

Max. output W	Type	Ref. No.	Mains voltage 0 Hz , $50-60 \mathrm{~Hz}$ V	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC V	Efficiency at full load \% (230 V)	Ambient temperature t_{a} ${ }^{\circ} \mathrm{C}$	Casing temperature t_{c} ${ }^{\circ} \mathrm{C}$	Weight g
K2.1 - Dimensions: $103.6 \times 67 \times 31 \mathrm{~mm}$											
24	ECXd 700.043	186279	198-264	160-100	$700 \pm 5 \%$	14-34	< 45	> 84	-25 to 50	75	145
			220-240	130-120							

ComfortLine
 LED Drivers

$700 \mathrm{~mA} / \max .24 \mathrm{~W}$ and max. 37 W
Compact casing shape with integrated cord grip optional for built-in or independent operation.

Electrical characteristics

Secondary side switching of LED modules is allowed (hot wiring).
Power factor at full load: > 0.9

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
DC operation: 198-264 V DC, 0 Hz
(can be reduced to 176 V with reduced
service life time)
With integrated through-wiring
Push-in terminals: $0.2-1.5 \mathrm{~mm}^{2}$

Safety features

Electronic short-circuit protection
Overload and overtemperature protection
Protection against "no load" operation
Degree of protection: IP20

Protection class II

SELV

Expected service life time

at operation temperatures at t_{c} point

Operation current	Ref. No. all types	
700	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
hrs.	50,000	100,000

K2.1

K3.2

Max. output W	Type	Ref. No.	Mains voltage $\begin{aligned} & 0 \mathrm{~Hz}, \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC V	Efficiency at full load \% (230 V)	Ambient temperature ${ }^{\dagger}$ a ${ }^{\circ} \mathrm{C}$	Casing temperature ${ }^{\dagger} c$ ${ }^{\circ} \mathrm{C}$	Weight 9
K2.1- Dimensions: $103.6 \times 67 \times 31$ mm											
24	ECXe 700.042	186278	198-264	160-100	$700 \pm 5 \%$	14-34	< 45	> 84	-25 to 50	75	135
			220-240	130-120							
K3.2 - Dimensions: $123.4 \times 79.4 \times 32.6$ mm											
37	ECXe 700.062	186306	198-264	235-155	$700 \pm 5 \%$	30-53	< 60	> 87	-25 to 50	75	170
			220-240	200-180							

ComfortLine LED Drivers

700 mA / max. 40 W
1050 mA / max. 60 W
With 12 V interface

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: 0.98

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
DC operation: $176-264 \mathrm{~V}$ DC, 0 Hz
Push-in terminals: 0.2-1.5 mm²

Safety features

Electronic short-circuit protection
Overload and overtemperature protection
Protection against "no load" operation
Degree of protection: IP20
Protection class I

SELV equivalent

Expected service life time

at operation temperatures at t_{c} poin		
$\begin{array}{l}\text { Operation } \\ \text { current }\end{array}$ $\begin{array}{l}\text { Ref. No. } \\ \text { all types }\end{array}$ 700 $75^{\circ} \mathrm{C}$ $65^{\circ} \mathrm{C}$ 1050 $80^{\circ} \mathrm{C}$ $70^{\circ} \mathrm{C}$ hrs. 50,000 100,000		

K3

K3 with cord grip

Max.	Type	Ref. No.	Mains voltage	Mains	Current	Voltage	Max. voltage	Efficiency	12 V	Ambient	Casing	Weight
output			OHz ,	current	output	output	without load		interface	temperature	temperature	
			$50-60 \mathrm{~Hz}$		DC	DC	DC	full load				
W			V	mA	mA	V	V	\% (230 V)	max. 2 W	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	g

K3 - Dimensions: $\mathbf{1 2 3 \times 7 9 \times 3 3} \mathbf{~ m m}$

40	ECXe 700.034	186266	176-264	280-185	$700 \pm 5 \%$	20-57	60	> 85	yes	-20 to 50	75	182
			220-240	230-200								
60	ECXe 1050.035	186268	176-264	380-252	$1050 \pm 5 \%$	20-57	60	> 85	yes	-20 to 50	80	213
			220-240	305-275								

K3 with cord grip - Dimensions: $159 \times 79 \times 33 \mathbf{~ m m}$

40	ECXe 700.034	186267	176-264	280-185	$700 \pm 5 \%$	20-57	60	> 85	yes	-20 to 50	75	220
			220-240	230-200								
60	ECXe 1050.035	186269	176-264	380-252	$1050 \pm 5 \%$	20-57	60	> 85	yes	-20 to 50	80	248
			220-240	305-275								

ComfortLine

 LED Drivers700 mA / max. 40 W
900 mA / max. 51.3 W
1050 mA / max. 60 W

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: 0.98

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$ DC operation: 176-264 V DC, 0 Hz
With integrated through-wiring
Push-in terminals: 0.2-1.5 mm²

Safety features

Temporary electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP20
Protection class I
SELV equivalent

K34 with cord grip

Expected service life time

at operation temperatures at tc point

Operation current	Ref. No. all types	
700	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
900	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
1050	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
hrs.	50,000	100,000

EasyLine LED Drivers

250/350/500 mA / max. 20 W 500/600/700 mA / max. 21 W
Compact casing shape with integrated cord grip optional for built-in or independent operation.

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: > 0.9

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Push-in terminals: 0.2-1.5 mm²
The output current can be selected with the connection of the different connection terminals

Expected service life time

at operation temperatures at t_{c} point

Operation current	Ref. No. all types	
all	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
hrs.	30,000	50,000

with $250 / 350 / 500 \mathrm{~mA}$ or $500 / 600 / 700 \mathrm{~mA}$.

Safety features

Temporary electronic short-circuit protection
Overload and overtemperature protection
Protection against "no load" operation
Degree of protection: IP20

Protection class II

SELV

K2.1

Max. output	Type	Ref. No.	Mains voltage$50-60 \mathrm{~Hz}$	Mains current	Current output DC	Voltage output	Max. voltage without load	Efficiency at	Ambient temperature	Casing temperature	Weight
							DC	full load	ta		
W			V	mA	mA	V	V	\% (230 V)	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	9

K2.1 - Dimensions: $103,6 \times 67 \times 31 \mathrm{~mm}$

10	ECXe 500.164	186463	220-240	53-48	$250 \pm 7.5 \%$	17-40	< 60	> 85	-20 to 50	80	145
14				73-67	$350 \pm 7.5 \%$						
20				104-95	$500 \pm 7.5 \%$						
15	ECXe 700.165	186464	220-240	80-71	$500 \pm 7.5 \%$	17-30	< 60	> 85	-20 to 40	80	145
18				94-86	$600 \pm 7.5 \%$						
21				110-100	$700 \pm 7.5 \%$						

LED Constant Current Drivers - Retail

EasyLine LED Drivers

500 mA / max. 25 W
700 mA / max. 35 W
1050 mA / max. 35 W
Compact casing shape with integrated cord grip optional for built-in or independent operation.

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: > 0.9

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Push-in terminals: 0.2-1.5 mm²

Safety features

Temporary electronic short-circuit protection
Overload and overtemperature protection
Protection against "no load" operation
Degree of protection: IP20

Protection class II

K3.2

SELV

Expected service life time

at operation temperatures at $t c$ poin		
$\begin{array}{l}\text { Operation }\end{array}$	$\begin{array}{l}\text { Ref. No. } \\ \text { Current } \\ \text { all types }\end{array}$	
all	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
hrs.	30,000	50,000

Max. output W	Type	Ref. No.	Mains voltage $\begin{aligned} & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC V	Efficiency at full load \% (230 V)	Ambient temperature ta ${ }^{\circ} \mathrm{C}$	Casing temperature t_{c} ${ }^{\circ} \mathrm{C}$	Weight
K3.2 - Dimensions: $123.4 \times 79.4 \times 32.6 \mathbf{~ m m}$											
25	ECXe 500.093	186363	220-240	135-125	$500 \pm 7.5 \%$	25-50	< 60	> 89	-20 to 50	70	170
35	ECXe 700.094	186364	220-240	185-170	$700 \pm 7.5 \%$	25-50	< 60	> 89	-20 to 50	70	170
35	ECXe 1050.095	186365	220-240	185-170	$1050 \pm 7.5 \%$	16-34	< 60	> 90	-20 to 50	70	180

ComfortLine LED

Drivers - Dimmable

700 mA / max. 30 W
1050 mA / max. 36 W

Electrical characteristics

Secondary side switching of LED modules
is not allowed.
Power factor at full load: > 0.9

Dimming (Type ECXd)

Dimmable with phase-cutting leading- and trailing-edge dimmer (phase-cutting trailing-edge is recommended).
Minimum dimmer load has to be observed.
The compatibility of the driver and the dimmer
has to be confirmed prior to installation to avoide
flickering and/or noises.

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Push-in terminals: 0.2-1.5 mm²

Safety features

Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP20

Protection class II

SELV

K35

K35 with cord grip

Max. output W	Type	Ref. No.	Mains voltage $50-60 \mathrm{~Hz}$ V	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC V	Efficiency at full load \% (230 V)	Ambient temperature ta ${ }^{\circ} \mathrm{C}$	Casing temperature tc ${ }^{\circ} \mathrm{C}$	Weight g
K35 - Dimensions: 96x50x31.5 mm											
30	ECXe 700.112	186393	220-240	155-140	$700 \pm 5 \%$	17-42	< 60	> 88	-25 to 50	75	130
K35 - Dimmable - Dimensions: 96x50x31.5 mm											
36	ECXd 1050.113	186394	220-240	200-180	$1050 \pm 10 \%$	18-36	< 60	> 85	- 10 to 40	75	140
K35 with cord grip - Dimmable - Dimensions: 127x50x31.5 mm											
36	ECXd 1050.113	186395	220-240	200-180	$1050 \pm 10 \%$	18-36	< 60	> 85	- 10 to 40	75	155

ComfortLine

LED Drivers

350 mA / max. 8 W
to $1050 \mathrm{~mA} / \mathrm{max} .20 \mathrm{~W}$

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: $>0.55(186180>0.60)$

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
DC operation: 176-264 V DC, 0 Hz
(can be reduced to 176 V with
reduced service life time)
Screw terminals: $2.5 \mathrm{~mm}^{2}$
With integrated cord grip (except 186180)

Safety features

Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP20
Protection class II
SELV equivalent

Max. output W	Type	Ref. No.	$\begin{aligned} & \text { Mains voltage } \\ & 0 \mathrm{~Hz}, \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC V	$\begin{aligned} & \text { Efficiency } \\ & \text { at } \\ & \text { full load } \\ & \%(230 \mathrm{~V}) \end{aligned}$	Ambient temperature t_{a} ${ }^{\circ} \mathrm{C}$	Casing temperature ${ }^{+}{ }_{c}$ ${ }^{\circ} \mathrm{C}$	Weight g
K29-Dimensions: $65 \times 30.7 \times 21.5 \mathrm{~mm}$											
8	ECXe 350.018	186180	176-264	60-40	$350 \pm 5 \%$	2-24	25	> 78	-20 to 50	80	33
			220-240	91-88							
K39 - Dimensions: $\mathbf{1 2 8 \times 3 7 \times 2 8} \mathbf{~ m m}$											
11	ECXe 350.009	186424	176-264	75-51	$350 \pm 5 \%$	2-32	34	> 87	-20 to 50	70	71
			220-240	122-117							
16	ECXe 500.010	186425	176-264	106-72	$500 \pm 5 \%$	2-32	34	>88	-20 to 50	75	71
			220-240	160-155							
17	ECXe 700.011	186426	176-264	117-79	$700 \pm 5 \%$	$2-25$	27	>87	$-20 \text { to } 50$	75	71
			220-240	188-178							
20	ECXe 1050.012	186427	176-264	137-92	$1050 \pm 5 \%$	$2-19$	21	>87	$-20 \text { to } 45$	75	71
			220-240	210-202							

Expected service life time

at operation temperatures at t_{c} point

Operation Current	Ref. No. 186180		186424	186425	186426	186427				
350 mA	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	-	-	-	-	-	-
500 mA	-	-	-	-	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	-	-	-	-
700 mA	-	-	-	-	-	-	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	-	-
1050 mA	-	-	-	-	-	-	-	-	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
hrs.	50,000	100,000	50,000	100,000	50,000	100,000	50,000	100,000	50,000	100,000

K29

LED Constant Current Drivers - Residential

ComfortLine

LED Drivers

1050 mA / max. 32 W

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: > 0.9

Connection details

Mains voltage: 220-240 V $\pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Pre-assembled connection leads
primary: $2 \times 0.5 \mathrm{~mm}^{2}$, length: 385 mm
secondary: $2 \times 0.5 \mathrm{~mm}^{2}$, length: 185 mm

Expected service life time

at operation temperatures at t_{c} point

Operation current	Ref. No. 186479	
1050 mA	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
hrs.	50,000	100,000

Safety features

Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP20

Protection class II

K35 with leads

SELV

Products under development; preliminary technical datas

Max. output W	Type	Ref. No.	Mains voltage $50-60 \mathrm{~Hz}$ V	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC V	Efficiency at full load \% (230 V)	Ambient temperature ta ${ }^{\circ} \mathrm{C}$	Casing temperature ${ }^{\circ} \mathrm{c}$ ${ }^{\circ} \mathrm{C}$	Weight g
K35 with leads - Dimensions: 78x50x31.5 mm											
32	ECXe 1050.117	186479	220-240	165-140	$1050 \pm 10 \%$	20-31	< 60	> 85	-25 to 50	75	170

EasyLine LED Drivers
 - Dimmable

150-700 mA / max. 6-36 W

Electrical characteristics

Secondary side switching of LED modules
is not allowed.
Power factor at full load: > 0.85

Dimming

Dimmable with phase-cutting trailing-edge dimmer. Minimum dimmer load has to be observed. The compatibility of the driver and the dimmer has to be confirmed prior to installation to avoide flickering and/or noises.

Expected service life time

at operation temperatures at t_{c} point

Operation current	Ref. No. $186415,186416,186451$			
all	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
hrs.	30,000	50,000	30,000	50,000

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Screw terminals: 0.5-2.5 mm²

Safety features

Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP20

Protection class II

SELV

K52

K53

Products under development; preliminary technical datas

Max. output W	Type	Ref. No.	Mains voltage $\begin{aligned} & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC V	$\begin{aligned} & \text { Efficiency } \\ & \text { at } \\ & \text { full load } \\ & \%(230 \mathrm{~V}) \\ & \hline \end{aligned}$	Ambient temperature ta ${ }^{\circ} \mathrm{C}$	Casing temperature ${ }^{\circ} \mathrm{c}$ ${ }^{\circ} \mathrm{C}$	Weight g
K52 - Dimensions: 123x45x 19 mm											
6	ECXd 150.151	186447	220-240	40-35	$150 \pm 8 \%$	27-41	60	> 78	- 15 to 45	70	70
10	ECXd 500.152	186448	220-240	60-50	$500 \pm 8 \%$	13-20	30	> 80	- 15 to 45	70	70
12	ECXd 250.153	186449	220-240	70-60	$250 \pm 8 \%$	27-48	60	> 80	- 15 to 45	70	70
K53 - Dimensions: 153x41×32 mm											
18	ECXd 350.130	186415	220-240	100-90	$350 \pm 8 \%$	32-52	60	> 85	- 15 to 45	80	70
18	ECXd 700.134	186450	220-240	95-85	$700 \pm 8 \%$	16-26	35	>85	- 15 to 45	70	140
25	ECXd 700.131	186416	220-240	140-120	$700 \pm 8 \%$	22-36	60	> 85	- 15 to 45	80	140
36	ECXd 700.155	186451	220-240	190-170	$700 \pm 8 \%$	32-52	60	> 83	- 15 to 45	80	170

EasyLine LED Drivers

700 mA / max. 5.2 W
For applications according to EN 60335

Electrical characteristics

Secondary side switching of LED modules
is not allowed.
Power factor at full load: > 0.5

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Pre-assembled connection leads
primary: $2 \times 0.75 \mathrm{~mm}^{2}$, length: 180 mm
secondary: $2 \times 0.5-0.75 \mathrm{~mm}^{2}$, length: 180 mm

Safety features

Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP20

Protection class II

SELV
K51

Expected service life time

at operation temperatures at tc point

Operation current	Ref. No. 186458	
700 mA	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
hrs.	30,000	50,000

Max. output W	Type	Ref. No.	Mains voltage $50-60 \mathrm{~Hz}$ V	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC V	Efficiency at full load $\% ~(230 ~ V)$	Ambient temperature t_{a} ${ }^{\circ} \mathrm{C}$	Casing temperature ${ }_{\mathrm{t}}^{\mathrm{c}}$ ${ }^{\circ} \mathrm{C}$	Weight g
K51 - Dimensions: $\mathbf{8 2 \times 4 2 . 5 \times 2 3 ~ m m ~}$											
5.2	ECXe 700.161	186458	220-240	50-30	$700 \pm 8 \%$	2.8-7.4	< 60	> 70	- 15 to 45	70	45

EasyLine LED Drivers

350 mA / max. 7 W
700 mA / max. 5.6 W

Electrical characteristics

Secondary side switching of LED modules
is not allowed.
Power factor at full load: > 0.5

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Pre-assembled connection leads
primary: $2 \times 0.75 \mathrm{~mm}^{2}$, length: 180 mm
secondary: $2 \times 0.5-0.75 \mathrm{~mm}^{2}$, length: 180 mm

Safety features

Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP20

Protection class II

SELV

Expected service life time

at operation temperatures at t_{c} point

Operation current	Ref. No. all types	
all	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
hrs.	30,000	50,000

K51

Max. output W	Type	Ref. No.	Mains voltage $50-60 \mathrm{~Hz}$ V	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC V	Efficiency at full load \% (230 V)	Ambient temperature ta ${ }^{\circ} \mathrm{C}$	Casing temperature ${ }^{\dagger}{ }_{c}$ ${ }^{\circ} \mathrm{C}$	Weight g
K51 - Dimensions: $\mathbf{8 2 \times 4 2 . 5 \times 2 3 \mathrm { mm }}$											
5.6	ECXe 700.081	186348	220-240	45-30	$700 \pm 5 \%$	2.8-8	<60	>70	-15 to 45	75	45
7	ECXe 350.079	186342	220-240	50-36	$350 \pm 5 \%$	8.4-20	< 60	> 70	- 15 to 45	75	45

EasyLine LED Drivers

$350 \mathrm{~mA} / \max .12 .6 \mathrm{~W}$ and max. 20 W $500 \mathrm{~mA} /$ max. 15 W
$700 \mathrm{~mA} /$ max. 20.3 W and max. 25.2 W
The LED constant-current drivers are designed
for use in residential lighting.

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: > 0.5 or >0.95 (186353)

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Screw terminals: 0.5-2.5 mm²

Safety features

Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP20

Protection class II

SELV

Expected service life time

at operation temperatures at t_{c} point

Operation current	Ref. No. 186341			186349	186431	186350	186353			
350 mA	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	-	-	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	-	-	-	-
500 mA	-	-	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	-	-	-	-	-	-
700 mA	-	-	-	-	-	-	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
hrs.	30,000	50,000	30,000	50,000	30,000	50,000	30,000	50,000	30,000	50,000

K52/K54

Max.	Type	Ref. No.	Mains voltage		Current	Voltage	Max. voltage	Efficiency	Ambient	Casing	Weight
output			$50-60 \mathrm{~Hz}$	current	output	output	without load		temperature	temperature	
					DC	DC	DC	full load			
W			V	mA	mA		V	\% (230 V)	${ }^{\circ} \mathrm{C}$		

K52 - Dimensions: $123 \times 45 \times 19$ mm

12.6	ECXe 350.078	$\mathbf{1 8 6 3 4 1}$	$220-240$	$100-70$	$350 \pm 5 \%$	$8.4-36$	<60	>83	-15 to 45	75	65
15	ECXe 500.082	$\mathbf{1 8 6 3 4 9}$	$220-240$	$90-70$	$500 \pm 5 \%$	$8-30$	<60	>83	-15 to 45	75	70
20	ECXe 350.142	$\mathbf{1 8 6 4 3 1}$	$220-240$	$110-95$	$350 \pm 5 \%$	$16-57$	<60	>85	-15 to 45	70	140
20.3	ECXe 700.083	$\mathbf{1 8 6 3 5 0}$	$220-240$	$115-100$	$700 \pm 5 \%$	$8-29$	<60	>83	-15 to 45	75	70
$\mathbf{K 5 4} \boldsymbol{-}$ Dimensions: $\mathbf{1 6 6 \times 5 2 \times 2 4} \mathbf{~ m m}$											
25.2	ECXe 700.086	$\mathbf{1 8 6 3 5 3}$	$220-240$	$130-115$	$700 \pm 8 \%$	$22-36$	<60	>88	-15 to 45	70	140

EasyLine LED Drivers

350 mA / max. 30 W
$1050 \mathrm{~mA} / \max .31 .5 \mathrm{~W}$
The LED constant-current drivers are designed for use in residential lighting

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: >0.98

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Screw terminals: 0.5-2.5 mm²

Safety features

Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP20

Expected service life time
at operation temperatures at tc point

Operation current	Ref. No. 186430			186351	
350 mA	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	-	-	
1050 mA	-	-	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	
hrs.	30,000	50,000	30,000	50,000	

Protection class II

SELV
 K53

Max. output W	Type	Ref. No.	Mains voltage $50-60 \mathrm{~Hz}$ V	Mains current mA	Current output DC mA	Voltage output DC V	```Max. voltage without load DC V```	Efficiency at full load $\%(230 \mathrm{~V})$	Ambient temperature ta ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Casing } \\ & \text { temperature } \\ & \mathrm{t}_{\mathrm{C}} \\ & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Weight g
K53 - Dimensions: $153 \times 41 \times 32 \mathrm{~mm}$											
30	ECXe 350.141	186430	220-240	160-140	$350 \pm 6 \%$	57-86	<90	> 89	- 15 to 45	70	200
31.5	ECXe 1050.084	186351	220-240	150-145	$1050 \pm 6 \%$	20-30	< 60	> 88	- 15 to 45	75	140

PrimeLine LED Drivers
 - Dimmable

700, 1000, $1400 \mathrm{~mA} / \max .90 \mathrm{~W}$
The nominal current can be set to 700 mA , $1000 \mathrm{~mA}, 1400 \mathrm{~mA}$ with a dip switch
or it can be adjusted with a DALI signal.

Electrical characteristics

Secondary side switching of LED modules
is allowed (hot wiring).
Power factor at full load: > 0.98

Dimming

The dimming function is achieved by applying a PWM signal to the nominal current.
Dimming range: 10 to 100%.
If no dimming interface is connected, brightness will stay at 100%.

MidNight - Multi-Step dimming

The MidNight concept is based on dimmable ballasts for integration in lampposts; these ballasts can be programmed to create different light scenes with different dimm settings.

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Push-in terminals: 0.75-2.5 mm^{2}

Safety features

Protection against transient main peaks up to 2 kV (between L and N) and

Expected service life time

at operation temperatures at tc point

Operation current	Ref. No. 186367	
700	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
1000	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
1400	$85^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
hrs.	50,000	100,000

up to 4 kV (between L, N and PE)
Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP65
Protection class I

Max. output W	Type	Ref. No.	Mains voltage $50-60 \mathrm{~Hz}$ V	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC V	$\begin{aligned} & \text { Efficiency } \\ & \text { at } \\ & \text { full load } \\ & \%(230 \mathrm{~V}) \end{aligned}$	Ambient temperature ta ${ }^{\circ} \mathrm{C}$	Casing temperature to ${ }^{\circ} \mathrm{C}$	Weight
K37 - Dimensions: $\mathbf{2 4 0 \times 6 0 \times 4 0} \mathbf{~ m m}$											
82	ECXd 1400.096	186367	220-240	450-150	$700 \pm 5 \%$	43-117	< 120	> 90	-40 to 50	70	445
90					$1000 \pm 5 \%$	33-91			-40 to 45	80	
					$1400 \pm 5 \%$	22-64			-40 to 40	85	

Comfortline LED Drivers - Dimmable

700 mA / max. 75, 100 and 150 W

These electronic LED constant current drivers are especially designed for use in street lighting systems.

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: > 0.9

Dimming

The dimming function is achieved by applying an analogue dimming signal to the nominal current. Dimming range: 10 to 100%.
If no dimming interface is connected, brightness will stay at 100%.

Connection details

Mains voltage: 120-277 V $\pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Pre-assembled connection leads:
primary: $2 \times 0.75 \mathrm{~mm}^{2}$, length: 450 mm
secondary: $4 \times 0.75 \mathrm{~mm}^{2}$, length: 180 mm

Safety features

Protection against transient main peaks
up to 6 kV (between L and N)

Electronic short-circuit protection
Overload protection
Overtemperature protection (186402)
Protection against "no load" operation
Degree of protection: IP65

Protection class II

Expected service life time

at operation temperatures at tc point

Operation current	Ref. No. 186400,186402			186401
700 mA	$85^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
hrs.	50,000	100,000	50,000	100,000

M59.1

M59.2

Products under development; preliminary technical datas

Max. output W	Type	Ref. No.	Mains voltage $50-60 \mathrm{~Hz}$ V	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC DC (V)	Efficiency at full load $\% ~(230 \mathrm{~V})$	Ambient temperature ta ${ }^{\circ} \mathrm{C}$	Casing temperature ${ }^{\text {tc }}$ ${ }^{\circ} \mathrm{C}$	Weight g
M59.1 - Dimensions: $241.2 \times 43.2 \times 31.5 \mathrm{~mm}$											
75	ECXd 700G. 117	186400	120-277	700-304	$700 \pm 5 \%$	54-107	< 250	> 88	-40 to 55	85	625
M59.2-Dimensions: $\mathbf{2 4 1 . 3 \times 6 0 . 7 \times 4 1 . 5 ~ m m ~}$											
100	ECXd 700G. 118	186401	120-277	917-398	$700 \pm 5 \%$	70-143	< 250	> 88	-40 to 55	80	1070
150	ECXd 700G. 119	186402	120-277	1363-591	$700 \pm 5 \%$	107-210	<250	> 88	-40 to 55	85	1070

ComfortLine LED

Drivers - Dimmable

1050 mA / max. 60 W

These electronic LED constant current drivers are especially designed for use in street lighting systems.

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: > 0.96

Dimming

The dimming function is achieved by applying an analogue dimming signal to the nominal current. Dimming range: 10 to 100%.
If no dimming interface is connected, brightness will stay at 100%.

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Pre-assembled connection leads:
primary: $2 \times 0.75 \mathrm{~mm}^{2}$, length: 300 mm
secondary: $6 \times 0.75 \mathrm{~mm}^{2}$, length: 300 mm

Safety features

Protection against transient main peaks up to 4 kV (between L and N)

Expected service life time

at operation temperatures at tc point

Operation current	Ref. No. 186316	
all	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
hrs.	50,000	100,000

Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP67

Protection class II

SELV

Max. output W	Type	Ref. No.	Mains voltage $50-60 \mathrm{~Hz}$ V	Mains current mA	Current output DC mA	Voltage output DC V	$\begin{aligned} & \text { Max. voltage } \\ & \text { without load } \\ & \text { DC } \\ & \hline \text { V } \\ & \hline \end{aligned}$	Efficiency at full load \% (230 V)	Ambient temperature ta ${ }^{\circ} \mathrm{C}$	Casing temperature ${ }^{\text {t. }}$ ${ }^{\circ} \mathrm{C}$	Weight 9
M57 - Dimensions: $\mathbf{2 0 1 \times 6 0 \times 3 4} \mathbf{~ m m}$											
60	ECXd 1050.069	186316	220-240	310-280	1050 $\pm 5 \%$	28-57	< 60	> 88	-40 to 50	80	730

ComfortLine LED
 Drivers - Dimmable

700 mA / max. 40 W

These electronic LED constant current drivers are especially designed for use in street lighting systems.

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: > 0.96

Dimming

The dimming function is achieved by applying
a PWM signal to the nominal current.
Dimming range: 3 to 100%.
If no dimming interface is connected, brightness
will stay at 100%.

Connection details

Mains voltage: $120-277 \mathrm{~V} \pm 10 \%$

Expected service life time

at operation temperatures at t_{c} point

Operation current	Ref. No. 186490	
700 mA	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
hrs.	50,000	100,000

Mains frequency: $50-60 \mathrm{~Hz}$
Push-in terminals: 0.75-2.5 mm²

Safety features

Protection against transient main peaks up to 6 kV (between L and N)
Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP65

Protection class II

Products under development; preliminary technical datas

Max. output W	Type	Ref. No.	Mains voltage $50-60 \mathrm{~Hz}$ V	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC V	Efficiency at full load \% (230 V)	Ambient temperature ta ${ }^{\circ} \mathrm{C}$	Casing temperature ${ }^{+} \mathrm{c}$ ${ }^{\circ} \mathrm{C}$	Weight g
M59 - Dimensions: $\mathbf{2 4 1 \times 3 2 \times 2 0 ~ m m ~}$											
40	ECXd 700G. 177	186490	120-277	440-200	$700 \pm 5 \%$	32-55	60	> 85	-30 to 55	80	398

ComfortLine

LED Drivers - for

 Power Reduction
700/400 mA / max. 150 W

These electronic LED constant current drivers are especially designed for use in street lighting systems. They provide a simple power-reduction option by connecting a further phase, which makes it possible to switch between 700 mA and 400 mA .

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: > 0.95

Power reduction

The nominal current output will be reduced by connecting the control phase (LST)
 to 57%.
Connecting L (black) and LST (orange) to the mains voltage reduces output by lowering the output current. If this function is not used, an additional terminal should be provided in the luminaire to fix the LST wire.

Connection details

Mains voltage: $220-277 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
K37: Push-in terminals: $0.75-2.5 \mathrm{~mm}^{2}$
K37 with cord grip:
Pre-assembled connection leads:
primary: $5 \times 1 \mathrm{~mm}^{2}, 200 \mathrm{~mm}$ secondary: $2 \times 1.5 \mathrm{~mm}^{2}, 200 \mathrm{~mm}$
Suitable for independent operation when capable connector acc. to EN 60598 is used.

Safety features

Protection against transient main peaks up to 3 kV (between L and N) and

up to 4 kV (between L, N and PE)
Electronic short-circuit protection
Overload and overtemperature protection

Expected service life time
at operation temperatures at t_{c} point

Operation current	Ref. No. all types	
all	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
hrs.	50,000	100,000

Degree of protection: IP20 or
IP66 (K37 with cord grip)
Protection class I

K37

K37 with cord grip

Max.	Type	Ref. No.	Mains voltage	Mains	Current	Voltage	Max. voltage	Efficiency	Ambient	Casing	Weight
output			$50-60 \mathrm{~Hz}$	current	output	output	without load		temperature	temperature	
					DC	DC	DC	full load			
W			V	mA				\% (230 V)	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	g

K37 - Dimensions: $\mathbf{2 4 0 \times 6 0 \times 4 0} \mathbf{~ m m}$

150	ECXd 700.023	186202	220-277	735-585	700 +5/-10\%	48-215	445	> 93	-40 to 60	75	440
					400 +5/-10\%	48-375					

K37 with cord grip - Dimensions: $\mathbf{2 7 5 \times 7 9 . 1 \times 5 1 ~ m m}$

150	ECXd 700.023	186203	220-277	735-585	700 +5/-10\%	48-215	445	> 93	-40 to 60	75	560
					$400+5 /-10 \%$	48-375					

[^41]
ComfortLine

LED Drivers - for

 Power Reduction700/400 mA / max. 75, 100 and 150 W
These electronic LED constant current drivers are especially designed for use in street lighting systems. They provide a simple power-reduction option by connecting a further phase, which makes it possible to switch between 700 mA and 400 mA .

Electrical characteristics

Secondary side switching of LED modules
is not allowed.
Power factor at full load: > 0.9

Connection details

Mains voltage: $120-277 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Pre-assembled connection leads:
primary: $2 \times 0.75 \mathrm{~mm}^{2}$,
length: $450 \mathrm{~mm} / 280 \mathrm{~mm}$ (M59.1)
secondary: $2 \times 0.75 \mathrm{~mm}^{2}$, length: 180 mm

Power reduction

The nominal current output will be reduced
by connecting the control phase (LST)
 to 57%.
Connecting L (black) and LST (orange) to the mains voltage reduces output by lowering the output current. If this function is not used,
an additional terminal should be provided in the luminaire to fix the LST wire.

Safety features

Protection against transient main peaks up to 6 kV (between L and N)

Expected service life time

Electronic short-circuit protection
Overload protection
Protection against "no load" operation Degree of protection: IP65
at operation temperatures at tc point

Operation current	Ref. No. 186397,186399			186398
700 mA	$85^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
hrs.	50,000	100,000	50,000	100,000

Protection class II

M59.

M59.2

Products under development; preliminary technical datas

Max.
output

Type

ComfortLine

LED Drivers

700 mA / max. 40 W

These electronic LED constant current drivers are especially designed for use in street lighting systems.

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: > 0.9

Connection details

Mains voltage: 120-277 V $\pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Push-in terminals: 0.75-2.5 mm^{2}

Expected service life time

at operation temperatures at ${ }^{t c}$ point

Operation current	Ref. No. 186489	
700 mA	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
hrs.	50,000	100,000

Safety features

Protection against transient main peaks up to 6 kV (between L and N)

Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP65

Protection class II

M59

Products under development; preliminary technical datas

Max. output W	Type	Ref. No.	Mains voltage $50-60 \mathrm{~Hz}$ V	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC DC (V)	Efficiency at full load \% (230 V)	Ambient temperature t_{a} ${ }^{\circ} \mathrm{C}$	Casing temperature ${ }^{\circ} \mathrm{c}$ ${ }^{\circ} \mathrm{C}$	Weight 9
M59 - Dimensions: $\mathbf{2 4 1 \times 3 2 \times 2 0 ~ m m ~}$											
40	ECXe 700G. 176	186489	120-277	440-200	$700 \pm 5 \%$	32-55	60	> 85	-30 to 55	80	393

ComfortLine LED Drivers

700 mA / max. 150 W

These electronic LED constant current drivers are especially designed for use in street lighting systems.

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: > 0.9

Connection details

Mains voltage: $120-277 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Pre-assembled connection leads:
primary: $2 \times 0.75 \mathrm{~mm}^{2}$, length: 450 mm
secondary: $2 \times 0.75 \mathrm{~mm}^{2}$, length: 180 mm

Safety features

Protection against transient main peaks
up to 6 kV (between L and N)

Electronic short-circuit protection
Overload and overtemperature protection
Protection against "no load" operation
Degree of protection: IP65

Protection class II

Expected service life time

at operation temperatures at t_{c} point

Operation current	Ref. No. 186399	
700 mA	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
hrs.	50,000	100,000

M59.2

4

Products under development; preliminary technical datas

Max. output W	Type	Ref. No.	Mains voltage $50-60 \mathrm{~Hz}$ V	Mains current mA	Current output DC mA	Voltage output DC V	Max. voltage without load DC DC (V)	Efficiency at full load \% (230 V)	Ambient temperature t_{a} ${ }^{\circ} \mathrm{C}$	Casing temperature ${ }^{\dagger}{ }_{c}$ ${ }^{\circ} \mathrm{C}$	Weight 9
M59.2 - Dimensions: $\mathbf{2 4 1 . 3 \times 6 0 . 7 \times 4 1 . 5 ~ m m ~}$											
150	ECXe 700G. 116	186399	120-277	1363-591	$700 \pm 5 \%$	107-210	< 250	> 88	-40 to 55	85	1070

ComfortLine LED Drivers

350 mA / max. 42 W

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: > 0.97

Connection details

Mains voltage: 220-240 V $\pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Push-in terminals: 0.75-2.5 mm²

Safety features

Protection against transient main peaks up to 3 kV (between L and N) and
up to 4 kV (between L, N and PE)
Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP20
Protection class I

SELV equivalent

K30

Max. output W	Type	Ref. No.	Mains voltage $50-60 \mathrm{~Hz}$ V	Mains current mA	Current output DC mA		```Max. voltage without load DC V```	Efficiency at full load \% (230 V)	Ambient temperature ta ${ }^{\circ} \mathrm{C}$	Casing temperature ${ }^{\circ} \mathrm{c}$ ${ }^{\circ} \mathrm{C}$	Weight 9
K30 - Dimensions: $187 \times 60 \times 36 \mathbf{~ m m}$											
42	ECXe 350.015	186175	220-240	210-190	$350 \pm 5 \%$	40-115	120	> 90	-30 to 60	70	270

Comfortline LED Drivers - Dimmable

700 mA / max. 112 W
 1050 mA / max. 126 W

These electronic LED constant current drivers are designed for use in industrial hall lighting systems.

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: > 0.95
Stand-by losses: <0.5 W

Dimming

The dimming function is achieved by applying a PWM signal to the nominal current. Dimming range: 3 to 100%. If no dimming interface is connected, brightness will stay at 100%.

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
DC operation: 198-264 V DC, 0 Hz
(can be reduced to 176 V with reduced service life time)
Push-in terminals: 0.2-1.5 mm^{2}

Safety features

Electronic short-circuit protection Overload and overtemperature protection Protection against "no load" operation Degree of protection: IP20
Protection class I
The LEDs are thermally protected by the driver's NTC interface, which ensures the current will be reduced when a critical temperature is reached.

DALI

NTC at LED module $10 \mathrm{k} \Omega$	
(Type Nurata NCP18XH103J03RB)	
$\mathrm{R}(\mathrm{k} \Omega)$	Nominal current (\%)
10	100
< 1.49	60
< 1.13	0 (off)

Expected service life time

at operation temperatures at tc point

Operation current	Ref. No. 186299							
186303	186303	186300	186304					
700 mA	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	-	-	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	-	-
1050 mA	-	-	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	-	-	$90^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$
hrs.	50,000	100,000	50,000	100,000	50,000	100,000	50,000	100,000

LED Constant Current Drivers - Industry

ComfortLine LED

Drivers - Dimmable and Adjustable

900/1050/1200/1400 mA / max. 60.2 W
The dial can be used to set the current output
to $900 \mathrm{~mA}(1), 1050 \mathrm{~mA}(2), 1200 \mathrm{~mA}(3)$
or $1400 \mathrm{~mA}(4)$.

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: > 0.95

Dimming

The dimming function is achieved by applying
a PWM signal.
Dimming range: 3 to 100\%.
If no dimming interface is connected, brightness will stay at 100%.

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
DC operation: 198-264 V DC, 0 Hz
Push-in terminals: $0.2-1.5 \mathrm{~mm}^{2}$
(NTC interface: 0.2-0.5 mm^{2})

Safety features

Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP20
Protection class I

SELV

The LEDs are thermally protected by the driver's NTC interface, which ensures the current will be reduced when a critical temperature is reached.

NTC at LED module $220 \mathrm{k} \Omega$

$\mathrm{R}(\mathrm{k} \Omega)$	Nominal current $(\%)$
34	100
27	60
16	0 (off)

Expected service life time

at operation temperatures at t_{c} point

Operation current	Ref. No. 186208	
all	$85^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
hrs.	50,000	100,000

K3

Max.	Type	Ref. No.	Mains voltage	Mains	Current output	Voltage	Max. voltage	Efficiency	Ambient	Casing	Weight
output			0 Hz ,	current	DC	output	without load		temperature	temperature	
			$50 / 60 \mathrm{~Hz}$			DC	DC	full load			
W			V	mA	mA	V	V	\% (230 V)	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	g

K3 - Dimensions: 123×79×33 mm

38,7/	ECXd 1400.025	186208	198-264	315-290	900 +5/-10\%/	20-43	< 52	> 85	-20 to 50	85	230
45,1/			220-240	350-265	1050 +5/-10\%/						
51,6/					1200 +5/-10\%/						
60,2					$1400+5 /-10 \%$						

LED Constant Current Drivers - Industry

ComfortLine LED

 Drivers - Dimmable and Adjustable350/500/600/700 mA / max. 39.9 W
The dial can be used to set the current output
to $350 \mathrm{~mA}(1), 500 \mathrm{~mA}(2), 600 \mathrm{~mA}(3)$
or 700 mA (4).

Electrical characteristics

Secondary side switching of LED modules is not allowed.
Power factor at full load: 0.95

Dimming

The dimming function is achieved by applying a PWM signal.
Dimming range: 3 to 100\%
If no dimming interface is connected, brightness will stay at 100%.

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
DC operation: 176-264 V DC, 0 Hz
Push-in terminals: 0.2-1.5 mm²
(NTC interface: 0.2-0.5 mm^{2})

Safety features

Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP20

Protection class II

SELV

The LEDs are thermally protected by the driver's NTC interface, which ensures the current will be reduced when a critical temperature is reached.

NTC at LED module $220 \mathrm{k} \Omega$
$\mathrm{R}(\mathrm{k} \Omega)$ Nominal current (\%) 34 100 27 60 16 $0(\mathrm{off})$
:---

Expected service life time

at operation temperatures at t_{c} point

Operation current	Ref. No. all types	
all	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
hrs.	50,000	100,000

K2

K2 mit Zugentlastung

Max.	Type	Ref. No.	Mains voltage	Mains	Current output	Voltage	Max. voltage	Efficiency	Ambient	Casing	Weight
output			0 Hz ,	current	DC	output	without load		temperature	temperature	
			$50 / 60 \mathrm{~Hz}$			DC	DC	full load			
W				mA	mA	V		\% (230 V)	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	

K2 - Dimensions: $103.6 \times 67 \times 31 \mathrm{~mm}$

19.95/	ECXd 700.024	186326	176-264	265-175	$350+5 /-10 \% /$	20-57	60	> 85	-20 to 50	75	190
28.5/			220-240	220-200	$500+5 /-10 \% /$						
34.2/					600 +5/-10\%/						
39.9					700 +5/-10\%						

K2 with cord grip - Dimensions: $140 \times 67 \times 31 \mathrm{~mm}$

LED Constant Current Drivers - Industry

ComfortLine LED Drivers

700 mA / max. 112 W
 1050 mA / max. 126 W

These electronic LED constant current drivers are designed for use in industrial hall lighting systems

Electrical characteristics

Secondary side switching of LED modules
is not allowed.
Power factor at full load: > 0.95

Connection details

Mains voltage: 220-240 V $\pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
DC operation: 198-264 V DC, 0 Hz
(can be reduced to 176 V with reduced service life time)
Push-in terminals: 0.2-1.5 mm²

Safety features

Electronic short-circuit protection
Overload and overtemperature protection
Protection against "no load" operation
Degree of protection: IP20

Protection class I
The LEDs are thermally protected by the driver's NTC interface, which ensures the current will be reduced when a critical temperature is reached.

NTC at LED module $10 \mathrm{k} \Omega$	
(Type Nurata NCP 18XH103J03RB)	
$\mathrm{R}(\mathrm{k} \Omega)$	Nominal current (\%)
10	100
< 1.49	60
<1.13	0 (off)

Expected service life time

at operation temperatures at t_{c} point

Operation current	Ref. No. 186297									186301	186298	186302	
700 mA	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	-	-	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	-	-					
1050 mA	-	-	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	-	-	$90^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$					
hrs.	50,000	100,000	50,000	100,000	50,000	100,000	50,000	100,000					

K38 with cord grip

M36 - Dimensions: $149.5 \times 75 \times 30 \mathbf{~ m m}$

112	ECXe 700.057	186297	198-264	550-510	$700 \pm 5 \%$	85-160	< 450	> 91	yes	-25 to 50	70	288
			220-240									
126	ECXe 1050.059	186301	198-264	630-590	$1050 \pm 5 \%$	85-120	< 450	> 91	yes	-25 to 50	75	288
			220-240									

K38 with cord grip - Dimensions: $210 \times 83 \times 32 \mathbf{~ m m}$

112	ECXe 700.057	186298	198-264	550-510	$700 \pm 5 \%$	85-160	< 450	> 91	yes	-25 to 50	80	335
			220-240									
126	ECXe 1050.059	186302	198-264	630-590	$1050 \pm 5 \%$	85-120	< 450	> 91	yes	-25 to 50	90	335
			220-240									

LED Constant Current Drivers - Industry

EasyLine LED Drivers

700-3200 mA / max. 50-230 W
These electronic LED constant current drivers are especially designed for use in street lighting systems.

Electrical characteristics

Secondary side switching of LED modules
is not allowed.
Power factor at full load: > 0.9

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Pre-assembled connection leads:
primary: $3 \times 2.08 \mathrm{~mm}^{2}$, length: 320 mm secondary: $2 \times 2.08 \mathrm{~mm}^{2}$, length: 320 mm

Safety features

Protection against transient main peaks up to 1.5 kV (between L and N)
Electronic short-circuit protection
Overload protection
Protection against "no load" operation
Degree of protection: IP67
Protection class I

Expected service life time

at operation temperatures at t_{c} point

Operation current	Ref. No. all types	
all	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
hrs.	30,000	50,000

M56/M58

M58.1

Products under development; preliminary technical datas

Max. output W	Type	Ref. No.	Mains voltage $50-60 \mathrm{~Hz}$ V	Mains current mA	Current output DC mA	Voltage output DC V	$\begin{aligned} & \text { Max. voltage } \\ & \text { without load } \\ & \text { DC } \\ & \text { V } \\ & \hline \end{aligned}$	Efficiency at full load $\%(230 \mathrm{~V})$	Ambient temperature t_{a} ${ }^{\circ} \mathrm{C}$	Casing temperature ${ }_{\mathrm{t}}^{\mathrm{c}}$ ${ }^{\circ} \mathrm{C}$	Weight g
M56-Dimensions: $185.5 \times 49.4 \times 40.6 \mathrm{~mm}$											
50	ECXe 700.156	186452	220-240	255-235	$700 \pm 5 \%$	35-72	75	> 88	-30 to 50	75	520
75	ECXe 1050.157	186453	220-240	380-350	$1050 \pm 5 \%$	35-72	75	> 88	-30 to 50	75	520
M58 - Dimensions: $\mathbf{2 0 5 . 6 \times 4 9 . 4 \times 4 0 . 6 ~ m m ~}$											
100	ECXe 1400.158	186454	220-240	510-470	$1400 \pm 5 \%$	30-72	75	> 90	-30 to 50	75	600
125	ECXe 1700.159	186455	220-240	625-580	$1700 \pm 5 \%$	30-72	75	> 90	-30 to 50	75	600
M58.1 - Dimensions: 206x68.6x37 mm											
150	ECXe 2100.160	186456	220-240	750-690	2100 $\pm 5 \%$	45-72	85	> 90	-30 to 50	75	840
175	ECXe 2400.167	186510	220-240	910-850	$2400 \pm 5 \%$	45-72	85	> 85	-30 to 50	75	840
200	ECXe 2800.168	186477	220-240	1040-960	$2800 \pm 5 \%$	45-72	85	> 85	-30 to 50	75	840
230	ECXe 3200.169	186478	220-240	1200-1100	$3200 \pm 5 \%$	45-72	85	> 85	-30 to 50	75	840

LED Constant Current Drivers - Accessories

iProgrammer

For programming LED drivers

The iProgrammer is designed to let you configure LED drivers using the 3C function.

Using DALI commands, the iProgrammer enables various functions to be configured on all VS LED drivers that feature the " 3 C " symbol.
As an example, not only can the current be set to a precise level, but programming functions for the street lighting zone can also be transferred.
Please refer to the manual at
www.vossloh-schwabe.com/en/home/products/
led-light-engines-and-modules/led-control-gears/ constant-current.html for detailed configuration procedures.

Technical notes

Configuration interface: DALI
Ambient temperature ta: 5 to $50^{\circ} \mathrm{C}$
Push-in terminals: 0.2-1.5 mm²

K3.2

Degree of protection: IP20

Connections

- Mains connection: 220-240 V AC/50-60 Hz
- Max. power consumption: 5 W
- USB 2.0

Software download

Under www.vossloh-schwabe.com/en/home/products/ led-light-engines-and-modules/led-control-gears/ constant-current.html

Functions

Connection

Configuring "3C" LED drivers

| Type | Ref. No. | Connection to PC/Laptop | Functions | Dimensions
 $\mathrm{mm}(L \times W \times H)$ | Weight
 g |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| iProgrammer | $\mathbf{1 8 6 4 2 8}$ | USB 2.0 | Configuring "3C" LED drivers | $123.4 \times 79.4 \times 33$ | 135 |

OPTIMISED LUMINAIRE PROTECTION

LUMINAIRE PROTECTION AND POWER ADJUSTMENT

This chapter presents inrush current limiters, electronic components to protect luminaires against mains surges, power reduction products and components with which the output current of LED drivers can be adjusted.

Luminaire Protection Device

For electronic devices

When electronic components form part of lighting systems, it is often necessary to protect such components against power-supply interruptions and electric overloads (power surges).

SP 230/10 K

Suitable for luminaires of protection class I and II
Dimensions: $32 \times 22 \times 13 \mathrm{~mm}$
Weight: 20 g
Connecting: solid wire, length: 50 mm
Ref. No.: 147230

SPC 230/10 K

If the protective luminaire component overloads, the connected lighting circuit will be interrupted. This cut-out function makes it easier to detect the end of life of the protective component, facilitates quick replacement by maintenance staff and provides reliable protection for lighting components.
Suitable for luminaires of protection class I
Type 3 product
Dimensions: $53 \times 28 \times 27 \mathrm{~mm}$
Weight: 50 g
Screw terminals: 0.5-1.5 mm²

Ref. No.: 142736

SP 3/230/10 K

Suitable for luminaires of protection class I
Type 3 product
Dimensions: $\varnothing 36 \times 75 \mathrm{~mm}$
Weight: 60 g
Screw terminals: 0.75-4 mm²
Ref. No.: 147233

These can be caused by switching inductive loads or by The protection unit reduces overatmospheric discharges such as lightning striking the mains or the ground. A further cause can be induced voltages from neighbouring cables when working with leading-edge phase-cutting controls.

voltages at the connection terminals of electronic components. The remaining residual voltage is then reduced to a respective protective level, based on the discharge current (see diagram below).

Type	Ref. No.	Voltage $\begin{aligned} & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Max. load current A	Max. impulse voltage Uoc (V)	Discharge current ($8 / 20 \mu \mathrm{~s}$)		Protection level at discharge current of 1000 A	Safety max. A	Max. permitted casing temperature ${ }^{\circ} \mathrm{C}$	Min. permitted ambient temperature ${ }^{\circ} \mathrm{C}$	Fixation
SP 230/10 K	147230	220-240	-	10,000	5000	10,000	$\leq 850 \mathrm{~V}$	25	80	-30	
SPC 230/10 K	142736	220-240	16	10,000	5000	10,000	$\leq 850 \mathrm{~V}$	16	80	-30	M 8×10
SP 3/230/10 K	147233	100-277	-	10,000	5000	10,000	$\leq 1000 \mathrm{~V}$	25	80	-30	M 8×10

Luminaire Protection Device

For electronic devices

These protective components are fitted with an
LED indicator. Once the end of the component's life
has been reached, the LED goes out and the
protective component has to be replaced.

SPC 230/10 K/i

Suitable for luminaires of protection class II
Type 3 product
Dimensions: $74 \times 24 \times 27 \mathrm{~mm}$
Weight: 100 g
Screw terminals: 0.5-2.5 mm²
Ref. No.: 142737

SP 3/230/10 K/i

Suitable for luminaires of protection class I
Type 3 product
Dimensions: $128 \times 37 \times 28 \mathrm{~mm}$
Weight: 61 g
Screw terminals: 0.5-2.5 mm^{2}

Ref. No.: 147234

Type	Ref. No.	Voltage $\begin{aligned} & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Max. load current A	Max. impulse voltage UOC (V)	Discharge current$(8 / 20 \mu \mathrm{~s})$		Protection level at discharge current of 1000 A	Safety max. A	Max. permitted casing temperature ${ }^{\circ} \mathrm{C}$	Min. permitted ambient temperature ${ }^{\circ} \mathrm{C}$	Fixation
SPC 230/10 K/i	142737	220-240	16	10,000	5000	10,000	$\leq 1000 \mathrm{~V}$	16	80	-30	M8×10
SP 3/230/10 K/i	147234	100-277	-	10,000	5000	10,000	$\leq 1000 \mathrm{~V}$	25	80	-30	-

Inrush Current Limiter ESB-6K

Limits capacitive inrush currents of electronic ballasts and converters for LED modules

Due to their capacitive nature, these products generate high inrush currents. By temporarily activating a limiting resistor, the inrush current is reduced to an uncritical value (see graph below).

Several LED drivers or electronic ballasts can be connected downstream under consideration of the maximum permissible continuous current of the inrush current limiter.

The device thus prevents any automatic circuit breakers from being triggered or any damage from being caused to upstream relay contacts.

Wiring

ESB-6K

Casing: PC
Dimensions ($\mathrm{a} \times \mathrm{b} \times \mathrm{c}$): $55 \times 28 \times 27 \mathrm{~mm}$
Weight: 61 g
Screw terminals: 0.5-1.5 mm²
Ref. No.: 149820

| Type | Ref. No. | Nominal voltage
 $50-60 \mathrm{~Hz}$
 $\mathrm{~V} \pm 10 \%$ | Power
 consumption
 W | Max.
 direct current
 A | Limiting
 resistor
 Ω | Period
 of limitation
 ms | Max. permitted
 casing
 temperature $\left({ }^{\circ} \mathrm{C}\right)$ | Min. permitted
 ambient
 temperature $\left({ }^{\circ} \mathrm{C}\right)$ | Fixation |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ESB-6K | $\mathbf{1 4 9 8 2 0}$ | $220-240$ | 0.25 | 6 | 20 | approx. 18 | 80 | -30 | $\mathrm{M} 8 \times 10$ |

Example using a 150 W LED driver

Brown: with ICL (ESB)
Blue: without ICL (ESB)
$1 \mathrm{~V}=1 \mathrm{~A}$

Power Switch PS 16 K

For electronic LED drivers

Given centralised control of an LED driver's 230 V power switch terminals, the existing cable capacities of the control line can lead to switching errors.
This can be prevented by installing a PS 16 K power switch, which features a potential-free and galvanically isolated switching contact.

The PS 16 K power switch complies with EN 61347 and is also suitable for use in luminaires of protection class I and II.

The power switch complies with the specification of DIN EN 61347.

PS 16 K

Casing: PC
Dimensions (axbxc): $74 \times 34 \times 27 \mathrm{~mm}$
Weight: 100 g
Screw terminals: 0.75-2.5 mm²

Ref. No.: 142185

Wiring

Type	Ref. No.	Control voltage $\begin{aligned} & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Max. switching capacity (VA)	Max. switching voltage (V)	Max. A $\lambda=1$	t current $\lambda=0.6$	Inherent heating K	Max. permitted casing temperature (${ }^{\circ} \mathrm{C}$)	Min. permitted ambient temperature (${ }^{\circ} \mathrm{C}$)	Fixation
PS 16 K	142185	230/220	4000	400	16	10	<25	80	-30	M8×10

Automatical Power Switch

for LED Drivers - PR 12 K LC

The PR 12 K LC can be used for power switching of LED drivers with respective interface.
A control phase is not needed.
Once it's connected to the mains supply voltage
the power switch will switch automatically.

The power switch complies with the specification of DIN EN 61347 and is suitable for the application in luminaires of protection class I and II.

PR 12 K LC

Casing: PC
Dimensions (axbxc): $76 \times 34 \times 30 \mathrm{~mm}$
Weight: 100 g
Screw terminals: 0.75-2.5 mm²
Ref. No.: 142170

Wiring diagram

For example with VS LED drivers ECXd 700.023 (Ref. No. 186202 or 186203)

Type	Ref. No.	Nominal voltage/ frequency $V \pm 10 \%$	Max. switching capacity (VA)	Max. co current (A) $\lambda=0.5$	ntact A) $\lambda=1$	Internal loss W	Inherent heating K	Switching-time selectable	Max. permitted casing temperature (${ }^{\circ} \mathrm{C}$)	Min. permitted ambient temperature (${ }^{\circ} \mathrm{C}$)	Fixation
PR 12 K LC	142170	$\begin{aligned} & 220-230 / 50 \\ & 220 / 60 \end{aligned}$	3000	8	12	< 1	< 12	see table	80	-30	M8x 10

Programmable Power Switch for LED Drivers - PR 12 KD

For power reduction purposes, the PR 12 KD power switch can be used, which addresses the LED driver's 230 V power reduction input.
A control phase is not needed.
The constant switching-time is selectable.
The left side of the rotary switch is used for reset to full power after eleven hours; the right side is for continuous power reduction after programmed time has been reached.

The power switch complies with the specification of DIN EN 61347 and is suitable for the application in luminaires of protection class I and II.

PR 12 KD

Casing: PC
Dimensions ($\mathrm{a} \times \mathrm{b} \times \mathrm{c}$): $76 \times 34 \times 30 \mathrm{~mm}$
Weight : 100 g
Screw terminals: 0.75-2.5 mm²

Wiring diagram

For example with VS LED drivers ECXd 700.023 (Ref. No. 186202 or 186203)

Type	Ref. No.	Nominal voltage/ frequency $V \pm 10 \%$	Max. switching capacity (VA)	Max. con current (A) $\lambda=0.5$	ntact A) $\lambda=1$	Internal loss W	Inherent heating K	Switching-time*	Max. permitted casing temperature $\left({ }^{\circ} \mathrm{C}\right)$	Min. permitted ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$	Fixation
PR 12 KD	142150	$\begin{aligned} & 220-230 / 50 \\ & 220 / 60 \end{aligned}$	3000	8	12	< 1	< 12	selectable	80	-30	M8x 10

[^42]
Switch Units for Electronic Operating Devices with 1-10 V Interface

Vossloh-Schwabe's switch units are designed to enable one-step power reduction of lamps (FL, CFL, LED, HS, HI and C-HII with the help of the respective electronic ballast or converter.

To this end, the switch units utilises the $1-10 \mathrm{~V}$ interface of the control gear unit. The switch unit is mainly intended for outdoor luminaires in systems with or without a control phase.

Shape: $56 \times 28 \times 27 \mathrm{~mm}$
Casing: PC
Screw terminals: 0.75-2.5 mm²
Max. permissible casing temperature $t_{c}: 80^{\circ} \mathrm{C}$ Min. permissible ambient temperature $t_{a}:-30^{\circ} \mathrm{C}$ Fastening: plastic male nipple with pre-assembled washer and nut

Power reduction SU 1-10 V K for lighting systems featuring an $\mathbf{L}_{\mathbf{S T}}$ control phase
The switch unit employs a positive switching to reduce power, i.e. power is reduced when the control phase is switched off $\left(L_{S T}=0 \mathrm{~V}\right)$.
The $1-10 \mathrm{~V}$ interface of the electronic ballast is addressed at the moment that power reduction is effected.

Power reduction PR 1-10 V K LC for

 lighting systems without a control phaseThis switch unit can be used to effect power reduction in lighting systems that do not feature a control phase.

The $1-10 \mathrm{~V}$ interface is addressed on the basis of the fundamental operating principle used by VosslohSchwabe's PR 12 K LC power switch (details of which can be made available on request). This power switch is capable of determining the starting time of reduced-power operation over the measured operating time of a lighting system. As a result, it is no longer necessary to spend valuable time modifying the power-reduction unit to suit the continually changing day-night cycle; changing the clocks in line with daylight saving measures in the summer and winter is equally unnecessary. The $1-10 \mathrm{~V}$ interface of the electronic ballast is addressed as soon as the system is switched to reduced power.

Circuit diagram PR 1-10 V K LC

Circuit diagram SU 1-10 V K

Resistor Network for LED Drivers

This resistor network is used to adjust the output currents of LED drivers. 255 different resistance values can be adjusted in 10-Ohm steps within a range from 0 to 2550 Ohm by connecting the SU $1-10 \mathrm{~V}$ K and PR 1-10 V LC power switches. As an example, this makes it possible to even out differences in luminous
flux common to LED luminaires.

The component is designed for use in protection class II luminaires.

R 10-1280

Casing: PC
Dimensions: $32 \times 25 \times 15 \mathrm{~mm}$
Weight: 20 g

Connection leads, solid: $0,5 \mathrm{~mm}^{2}$
Lead length: 50 mm
Ref. No.: 149800

LED COMPONENTS
 FOR 24 V SYSTEMS

With its high-power 24 V system, Vossloh-Schwabe is responding to the trend towards market harmonisation and simplification of LED control technology.

The modules are operated at 24 V DC and constant-current control of 350 mA min. is effected on the circuit board. The module is connected using on-board push-in terminals and matching connecting cables. This enables modular and highly flexible LED systems.

The RGB system is based on the "common anode" principle. The DigiLED CA series permits the operation of high-power RGB modules and low-power modules of "common anode" design.

Typical applications

- General lighting
- Architectural lighting
- Lighting of complex structures
- Entertainment
- Shop design

The specifications contained in this catalogue can change due to technical innovations. Any such changes will be made without separate notification.

Please read the safety and installation instructions on the individual products as well as further technical information provided in the extensive product descriptions at
www.vossloh-schwabe.com.

LED PROFILE

LEDProfile IP67

Light modules for IP67-compliant outdoor lighting

Vossloh-Schwabe provides an IP67-compliant encapsulation for LED frames destined for outdoor lighting projects (e.g. architectural lighting).
on request, these frames can be fitted and encapsulated with flexible modules (WU-M-456). Depending on the respective LED module, the length of the frame can be extended by several times the by the length of the LED module (100 mm). The maximum frame length is 2 m .

The LED arrays can be supplied in white, warm white or RGB.

Please contact your VS sales representative for further details.

High Power 24 V CA
 Modules
 White and RGB

Built-in PCB lighting modules

The High Power 24 V CA modules are available in white and warm white or RGB with a very high luminous flux.

The round design with 3 or 10 High Power LEDs is particularly suitable for installation in luminaires and spots. The linear design with 6 LEDs is, for instance, suitable for wall-washing and linear luminaires, etc.

To enable easy understanding of the system, the modules are operated at 24 V DC. Constant-current control of the LEDs is on the circuit board. Contacts are made using an on-board push terminal with matching connection cables.

Additional suitable dimming modules (DigiLED CA series) and optics attachments (see pages 86-88) are available to create individual lighting solutions.

Technical notes

Triple WU-M-440: $\varnothing 66$ mm, 3 LEDs Line WU-M-441: $300 \times 26 \mathrm{~mm}, 6$ of LEDs
Flood WU-M-442: $\varnothing 110 \mathrm{~mm}$, 10 of LEDs
Allowed operating temperature at t_{c} point:

$$
-10 \text { to } 85^{\circ} \mathrm{C}
$$

Aluminium PCB
For improved thermal management VS recommends an additional cooling element, which is suitable for the application.
Colour rendering index: > 80
Increased ESD protection
Voltage supply: 24 V
Unit: 50 pcs.

Typical applications

- General lighting
- Architectural lighting
- Entertainment, shop design
- Decorative lighting
- Light advertising

Line

High Power 24 V CA Modules - White

Type	Ref. No.	Number of LEDs	Colour	Colour temperature* K	$\begin{aligned} & \text { Inrush current* } \\ & \text { A } \end{aligned}$	Nominal current* A	Typ. luminous flux* (Im) min. typ.		Beam $\text { angle* }\left(^{\circ}\right)$	Max. power* W
Mono Triple										
WU-M-440-WW	548520	3	warm white	3000-130/+220	0.86	0.35	565	610	115	10
WU-M-440-NW	548519	3	neutral white	4000-300/+260	0.86	0.35	565	610	115	10
Mono Line										
WU-M-441-WW	548523	6	warm white	3000-130/+220	1.66	0.70	1130	1220	115	20
WU-M-441-NW	548522	6	neutral white	4000-300/+260	1.66	0.70	1130	1220	115	20
Mono Flood										
WU-M-442-WW	548526	10	warm white	3000-130/+220	1.10	0.70	1400	1550	115	20
WU-M-442-NW	548525	10	neutral white	4000-300/+260	1.10	0.70	1400	1550	115	20

High Power 24 V CA Modules - RGB

Type	Ref. No.	Number of LEDs	Colour	Dom. wavelength (nm) red green		blue	$\begin{aligned} & \text { Inrush current* } \\ & \text { A } \end{aligned}$	Nominal current* A	Typ. luminous flux* (Im) red green blue			Beam $\text { angle* }\left(^{\circ}\right)$	Max. power* W
RGB Triple													
WU-M-440-RGB	548518	3	RGB	620-630	520-535	465-485	0.54	0.22	70	115	42	130	5
RGB Line													
WU-M-441-RGB	548521	6	RGB	620-630	520-535	465-485	1.10	0.65	200	300	115	130	15
RGB Flood													
WU-M-442-RGB	548524	10	RGB	620-630	520-535	465-485	1.40	1.10	305	595	175	130	25

Emission data at $t_{i}=25^{\circ} \mathrm{C}$ | * Measurement tolerance of luminous flux: $\pm 7 \%$
Suitable thermal tapes for these LED modules see page 90 .

LEDLine Flex SMD Professional Indoor White

Built-in PCB lighting modules

The LEDLine Flex SMD Professional Indoor is fitted with SMD LEDs on a flexible printed circuit board of only approx. 0.4 mm thickness. Even the most complex structures can be illuminated thanks to the use of an extremely pliable foil. LEDLine Flex SMD Professional Indoor can be separated into segments of 100 mm lengths without loss of function. This product is available in a continuous length of up to 10 m . Installation is achieved via double-sided adhesive tape affixed to the rear of the PCB.

Technical notes

Dimensions LEDLine Flex SMD Professional Indoor

L×W mm	LEDs pcs.	Single steps	Length mm	SMDs pcs.
10000×10	600	100	100	6

Allowed operating temperature at t_{c} point:
-20 to $65^{\circ} \mathrm{C}$
Wide beam angle (120°)
Voltage supply: 24 V

Power consumption per step (100 mm): 0.53 W

Typical applications

- Architectural lighting
- Illumination of complex structures
- Entertainment, shop design
- Marking paths, stairs, etc.
- Furniture lighting
- Light advertising

Type	Ref. No.	Colour	Correlated colour temperature K	Current A	Typ. luminous flux* Im	Beam angle* -	Max. power W	$\begin{array}{\|l\|} \hline \mathrm{CRI} \\ \mathrm{R}_{\mathrm{a}} \\ \hline \end{array}$
WU-M-456-27K	551700	warm white	2700-120/+170	2.2	4100	120	53	> 80
WU-M-456-30K	550532	warm white	3000-130/+220	2.2	4200	120	53	> 80
WU-M-456-40K	550533	neutral white	4000-290/+260	2.2	4600	120	53	> 80
WU-M-456-50K	550534	cool white	5000-255/+310	2.2	4900	120	53	>80
WU-M-456-65K	550535	cool white	6500-480/+540	2.2	5200	120	53	> 80

[^43]
LEDLine Flex SMD
 Professional Indoor White
 - High Brightness

Built-in PCB lighting modules

The LEDLine Flex SMD Professional Indoor High Brightnes sis fitted with SMD LEDs on a flexible printed circuit board of only approx. 0.4 mm thickness.
Even the most complex structures can be illuminated thanks to the use of an extremely pliable foil. LEDLine Flex SMD Professional Indoor High Brightness can be separated into segments of 80 mm lengths without
 loss of function.
This product is available in a continuous length of up to 3.2 m . Installation is achieved via double-sided adhesive tape affixed to the rear of the PCB.

Technical notes

Dimensions LEDLine Flex SMD Professional Indoor

LxW mm	LEDs pcs.	Single steps	Length mm	SMDs pcs.
3200×10	280	40	80	7

Allowed operating temperature at t_{c} point:
-20 to $65^{\circ} \mathrm{C}$

Wide beam angle (120°)
Voltage supply: 24 V
Power consumption per step $(80 \mathrm{~mm}): 1.02 \mathrm{~W}$

Typical applications

- Architectural lighting
- Illumination of complex structures
- Entertainment, shop design
- Marking paths, stairs, etc.
- Furniture lighting
- Light advertising

| Type | Ref. No. | Colour | Correlated colour temperature
 K | Current
 A | Typ. luminous flux*
 Im | Beam angle* power
 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| WU | | | | | | |

[^44]
AluLED IP20

AluLED IP20 is ideal for indoor applications and the slim \& flat design is extremely convenient for low profile lighting design mounting. It is available in neutral white (4000 K). Further white tones on requepcs.

Technical notes

Voltage supply: 24 V DC
Beam angle: 120°
Allowed ambient temperature: -20 to $40^{\circ} \mathrm{C}$
Allowed storage temperature: -40 to $85^{\circ} \mathrm{C}$
Degree of protection: IP20
Maximum bridging current load: 3 A

White Modules											
Type	Ref. No.	length mm	No. of LEDs	Current mA	Colour	Colour temperature K	Luminous flux Im	Beam angle 0	Power W	Cover	Packing unt pcs.
AluLED-320-4000-IP20-D	552092	320	18	180	neutral white	4000	220	120	4.3	Diffuse	1
AluLED-320-4000-IP20 - C	552093	320	18	180	neutral white	4000	240	120	4.3	Clear	1
AluLED-1 220-4000-IP20 - D	552094	1220	72	720	neutral white	4000	870	120	17.3	Diffuse	1
AluLED-1220-4000-IP20 - C	552095	1220	72	720	neutral white	4000	950	120	17.3	Clear	1

[^45]
AluLED IP64

AluLED IP64 is ideal for outdoor protected applications under humid conditions (excluding direct UV and water exposure) and the slim \& flat design is extremely flexible for low profile lighting design mounting.
It is available in different CCTs and RGB to suit different application needs.

Technical notes

Voltage supply: 24 V DC
Beam angle: 120°
Allowed ambient temperature: -30 to $85^{\circ} \mathrm{C}$
Allowed storage temperature: -40 to $85^{\circ} \mathrm{C}$
Degree of protection: IP64
Maximum bridging current load: 3 A

White Modules										
Type	Ref. No.	Length mm	No. of LEDs	Current mA	Colour	Colour temperature K	Luminous flux Im	Beam angle -	Power W	Packing unit pcs.
AluLED-320-3000	543314	320	16	160	warm white	3000	70	120	3.8	1
AluLED-920-3000	543315	920	48	480	warm white	3000	505	120	11.5	1
AluLED-1220-3000	543316	1220	64	640	warm white	3000	675	120	15.3	1
AluLED-320-6000	543317	320	16	160	cool white	6000	225	120	3.8	1
AluLED-920-6000	543318	920	48	480	cool white	6000	670	120	11.5	1
AluLED-1220-6000	543319	1220	64	640	cool white	6000	895	120	15.3	1

RGB Modules													
Type	Ref. No.	Length mm	No. of LEDs	Current mA		flux (lm green	blue	Dom. wave red	length (nm) green	blue	Beam angle 。	Power W	Packing unit pcs
AluLED-320-RGB	543320	320	14	120	18	40	9	620-630	520-535	465-475	120	2.8	1
AluLED-920-RGB	543321	920	42	360	54	120	28	620-630	520-535	465-475	120	8.6	1
AluLED-1220-RGB	543322	1220	56	480	72	160	36	620-630	520-535	465-475	120	11.5	1

[^46]
Colour Control Modules - DigiLED CA

The DigiLED CA series is based on a system design that combines simplicity, flexibility and reliability. The DigiLED CA series is suitable for operating both highpower RGB CA modules and low-power RGB CA modules.
In the simplest case, a keypad enables manual colour control. In addition to custom colour control, it is also possible to call up pre-set colour programs for example colour sequences.

Technical notes

Dimensions: $93 \times 58 \times 29 \mathrm{~mm}$
Ambient temperature ta: 0 to $45^{\circ} \mathrm{C}$
Operating voltage: 24 V
Max. current on the supply line: 5 A
Push-in terminals: $0.25-1.5 \mathrm{~mm}^{2}$,
grid: 3.5 mm
All DigiLED not suitable for the US market

DigiLED Manual CA

Colour controls via key pads (6 keys) Individual colour control or selection of
pre-set programs
$\mathrm{t}_{\mathrm{c}}=55^{\circ} \mathrm{C}$ max.
Max. current per control channel: 1.25 A
Type: WU-ST-001-Digi-manuell-CA

Ref. No.: 186136

DigiLED DALI CA

Digital colour controls via DALI light management $t_{C}=60^{\circ} \mathrm{C}$ max.
Max. current per control channel: 1.25 A
Type: WU-ST-004-Digi-DALI-CA
Ref. No.: 186138

DigiLED DMX CA

Digital colour controls via DMX light management $\mathrm{t}_{\mathrm{C}}=60^{\circ} \mathrm{C}$ max.
Max. current per control channel: 1.25 A
Type: WU-ST-003-Digi-DMX-CA

Ref. No.: 186153

DigiLED IR CA

Colour adjustment by a portable remote control
Call up of pre-adjusted setting possible
Data transfer via infra-red
$\mathrm{t}_{\mathrm{C}}=55^{\circ} \mathrm{C}$ max.
Max. current per control channel: 1.25 A
Type: WU-ST-005-Digi-IR-CA
Ref. No.: 186154

The CA series of VS colour control modules are available with both a manual operating pad and a DALI interface or "PUSH" or DMX variant.

Furthermore the DigiLED Mono is available. The DigiLED Mono enables the dimming of single-colour (e. g. white) LED modules.

DigiLED RF CA

Easy operation possible via radio frequency (RF) and a keypad with 7 buttons. The operation via radio frequency (RF) enables a flexible installation. Optical "line of sight" or cables are not necessary due to RF operation.
Dimensions: $93 \times 58 \times 29 \mathrm{~mm}$
Ambient temperature ta: -20 to $45^{\circ} \mathrm{C}$
Operating voltage: 24 V DC
Max. current per control channel: 1.25 A
Type: WU-ST-O12-DigiLED-RF CA

Ref. No.: 186181

Walltransmitter

Required to activate the programs
in the DigiLED RF
Dimensions: $86 \times 86 \times 15 \mathrm{~mm}$
Colour: white
Type: WU-ST-009-Walltransmitter
Ref. No.: 536843

DigiLED Push CA

Colour adjustment by separate push button
Permits retrieval of pre-set programs
$\mathrm{t}_{\mathrm{c}}=55^{\circ} \mathrm{C}$ max.
Max. current per control channel: 1.25 A
Type: WU-ST-006-DigiLED-Push CA
Ref. No.: 186144

DigiLED RF CA

Walltransmitter

DigiLED Mono CA

Passive Slave CA

Increase of the system performance
for 24 V CA LED built-in system
No signal amplification on channels $R G B(W)$ $\mathrm{t}_{\mathrm{c}}=65^{\circ} \mathrm{C}$ max.
Type: WU-ST-O11-Passive-Slave CA
Ref. No.: 186172

Passive Slave PCB CA

PCB for increase of the system performance
for 24 V CA LED built-in system
Without casing
No signal amplification on channels $R G B(W)$
$t_{C}=65^{\circ} \mathrm{C}$ max.
Type: WU-VB-004-Slave-PCB CA

Ref. No.: flatband cable

Passive Slave PCB CA

Table 1: Terminal connection

Pole	Colour coding	Function	Max. current-carrying capacity	Colour coding System flatband cable
1	red	supply line for LED built-in modules (+24 V)	5 A	blue
2	orange	PWM signal line for channel 1	1.25 A	grey
3	green	PWM signal line for channel 2	1.25 A	grey
4	blue	PWM signal line for channel 3	1.25 A	grey
5	light grey	PWM signal line for channel 4	1.25 A	grey
6	black	supply line for LED built-in modules (GND)	5 A	grey

LED Connection Technology for 24 V CA System

Various connection methods like flatband cables, feed-in cables, PCB distributors and slaves can be used to effect electrical connections between LED assembly modules and DigiLED CA colour control units.

Flatband and feed-in cables are designed to ensure that LED built-in modules can be connected to a DigiLED CA colour control unit or a PCB distributor or slave board up to the maximum current-carrying capacity specified in Table 1.

When setting up a 24 V CA system, it must be ensured that the minimum supply voltage stated in the data sheets of the LED built-in modules is attained through the combination of lead lengths.

Flatband system cables

For reverse-polarity protected connections between LED built-in modules and/or groups and for connection to PCB distributors. The six-strand flatband cable is fitted with pre-assembled connectors that plug directly in to the sockets of the LED built-in modules and PCB
distributors.
Type: WU-VB-002-HP-20mm
Ref. No.: 539476 cable length: 20 mm Type: WU-VB-002-HP-100mm
Ref. No.: 539475 cable length: 100 mm
Flatband extension cable
Type: WU-VB-008-HP-extension-400mm
Ref. No.: $\mathbf{5 4 3 1 8 7}$ cable length: 400 mm

Feed-in cable

For connecting LED built-in modules and groups to a DigiLED CA colour control unit or slave board. The reverse-polarity protected connector attached to the feed-in cable is plugged on the LED built-in module. The other side of the cable is then connected to the slave board or DigiLED CA colour control unit while ensuring correct polarity (colour coding)
Type: WU-VB-002-HP-Feed-in-500mm
Ref. No.: 535900 cable length: 500 mm

Feed-in cable Mono

For reverse polarity protected connection between monochromatic LED built-in modules and 24 V voltage supply. The dimming function is not supported. Type: WU-VB-006-HP-Feed-in-500mm mono Ref. No.: 542267 cable length: 500 mm

EasyConnect Cable for AluLED

Max. permissible current: 3 A
Number of strands: 2/4
(Strand diameter: $0.35 \mathrm{~mm}^{2} / 22$ AWG)
For monochrome modules with 2 strands
Ref. No.: 54342625 cm , male connector
Ref. No.: 54342750 cm , male/female connector For RGB modules with 4 strands

Ref. No.: 54342825 cm , male connector

Ref. No.: 54342950 cm , male/female connector

PCB distributor

For connecting up to four LED built-in modules or groups to a DigiLED CA colour control unit or slave board. The maximum current-carrying capacity per contact is 5 A on the input side (terminal) and as detailed in Table 1 (page 202) on the output side (connector). A standard six-strand conductor (e.g. LIYY $6 X 0.75 \mathrm{~mm}^{2}$) and up to four flatband cables can be used.
Type: WU-VB-003-DistriPCB CA
Ref. No.: 186141

LED Constant Voltage Devices for LED Modules 24 V

ComfortLine LED Constant Voltage Drivers

24 V / max. 20 W

These flat LED constant-voltage drivers are designed
for use in applications with small capacity range of up to 20 W .

Electronic characteristics

Expected service life time

at operation temperatures at tc point

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
With connection lead on primary side
Mains frequency: $50-60 \mathrm{~Hz}$

	Ref. No. 186129	
t_{c} temperature	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
hrs.	50,000	100,000

Safety features

Electronic short-circuit protection
Overload and temperature protection: reversible
Protection against "no load" operation

K62 with cord grip

Protection class II
 SELV-equivalent

Max. output W	Type	Ref. No.	Mains voltage $\begin{aligned} & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Output voltage V	Mains current mA	Current output A	Ambient temperature t_{a} ${ }^{\circ} \mathrm{C}$	Casing temperature t_{c} ${ }^{\circ} \mathrm{C}$	Weight g
K62 with cord grip - Dimensions: $182 \times 42 \times 18$ mm									
20	EDXe 120/24.009	186129	220-240	$24 \pm 0,5$	230-210	0.0-0.85	- 20 to 45	75	155

LED Constant Voltage Devices for LED Modules 24 V

ComfortLine

 LED Constant Voltage Drivers
24 V / max. 50 W, max. 70 W

 and max. 130 WThese LED constant-voltage drivers are designed for use in applications with medium and high capacity range of up to $50 \mathrm{~W}, 70 \mathrm{~W}$ or 130 W .

Electronic characteristics

Power factor at full load: > 0.97

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10$ \%
Mains frequency: $50-60 \mathrm{~Hz}$

Expected service life time
at operation temperatures at t_{c} point

	Ref. No. $186103,186104,18618,186219$			186131,186132	
t_{c} temperature	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	
hrs.	50,000	100,000	50,000	100,000	

K30 / K30.1

K30 / K30.1 with cord grip

Max. output W	Type	Ref. No.	Mains voltage $50,60 \mathrm{~Hz}$ V	Output voltage V	Mains current mA	Current output A	Ambient temperature \dagger_{a} ${ }^{\circ} \mathrm{C}$	Casing temperature t_{c} ${ }^{\circ} \mathrm{C}$	Weight

K30 - Dimensions (LxW XH): $\mathbf{1 8 7 \times 6 0 \times 3 6} \mathbf{~ m m}$

50	EDXe 150/24.035	186218	220-240	$24 \pm 0,72$	260-235	0.0-2.1	-40 to 45	70	320
K30.1-Dimensions (LxW x H): 200x61×49 mm									
70	EDXe 170/24.010	186103	220-240	$24 \pm 0,48$	360-310	0.0-2.9	-20 to 45	70	340
130	EDXe 1130/24.014	186131	220-240	$24 \pm 0,48$	640-585	0.0-5.4	-20 to 45	75	370
K30 with cord grip - Dimensions (LxW x H): 224x60x36 mm									
50	EDXe 150/24.035	186219	220-240	$24 \pm 0,72$	260-235	0.0-2.1	-40 to 45	70	370
K30.1 with cord grip - Dimensions (LxW x H): $\mathbf{2 4 5 \times 6 1 \times 4 9} \mathbf{~ m m}$									
70	EDXe 170/24.010	186104	220-240	$24 \pm 0,48$	360-310	0.0-2.9	-20 to 45	70	360
130	EDXe 1130/24.015	186132	220-240	$24 \pm 0,48$	640-585	0.0-5.4	- 20 to 45	75	390

LED Constant Voltage Devices for LED Modules 24 V

ComfortLine LED Constant Voltage Drivers

24 V / max. 70 W and max. 130 W - IP67
These LED constant-voltage drivers are designed for use in IP67 applications with medium and high capacity range of up to 70 W or 130 W .

Electronic characteristics

Power factor at full load: > 0.97

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$

Expected service life time

at operation temperatures at t_{c} point

	Ref. No. 186105,186133	
t_{c} temperature	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
hrs.	50,000	100,000

Preassembled connection leads
primary side: $5 \times 1 \mathrm{~mm}^{2}$, length: 200 mm
secondary side: $2 \times 1 \mathrm{~mm}^{2}$, length: 200 mm

Safety features

Electronic short-circuit protection
Overload and temperature protection: reversible
Protection against "no load" operation
Degree of protection: IP67
Protection class I

SELV

K37 with cord grip

Max.	Type	Ref. No.	Mains voltage	Output	Mains	Current	Ambient	Casing	Weight
output			$50,60 \mathrm{~Hz}$	voltage	current	output	temperature ta	temperature t_{c}	
W							${ }^{\circ} \mathrm{C}$		g

K37 with cord grip - Dimensions (L×W x H): 275×79.1×51 mm

70	EDXe 170/24.010	186105	220-240	24 ± 0.48	360-330	0.0-2.9	-20 to 45	70	515
130	EDXe 1130/24.016	186133	220-240	24 ± 0.48	640-585	0.0-5.4	-20 to 45	70	545

LED Constant Voltage Devices for LED Modules 24 V

EasyLine LED Constant Voltage Drivers

24 V / max. 75 W, max. 100 W

 and max. 150 W - IP67These LED constant-voltage drivers are designed for use in IP67 applications with high capacity range of up to $75 \mathrm{~W}, 100 \mathrm{~W}$ or 150 W

Expected service life time
at operation temperatures at t_{c} point

	Ref. No. all types	
t_{c} temperature	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
hrs.	30,000	50,000

K30.2

M58.1

Products under development; preliminary technical datas

Max. output W	Type	Ref. No.	Mains voltage $50,60 \mathrm{~Hz}$ V	Output voltage V	Mains current mA	Output current A	Ambient temperature ta $\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature tc $\left({ }^{\circ} \mathrm{C}\right)$	Efficiency at full load $\%$ (230 V)	Weight
K30.2 - Dimensions (LxW x H): 180×52x32 mm										
75	EDXe 175/24.040	186432	220-240	24 ± 0.5	385-355	0.0-3.125	- 15 to 45	80	89	440
M58.1- Dimensions (LxW x H): $\mathbf{2 0 6 \times 6 8 . 6 \times 3 7} \mathbf{~ m m}$										
100	EDXe 1100/24.041	186433	220-240	24 ± 0.5	505-465	0.0-4.2	-15 to 45	85	90	840
150	EDXe 1150/24.042	186434	220-240	24 ± 0.5	760-700	0.0-6.25	- 15 to 45	80	90	840

ComfortLine

LED Constant
Voltage Drivers
12 V / max. 12 W
The compact LED constant-voltage drivers are designed for use in applications with small capacity range of up to 12 W .

Electronic characteristics

Power factor at full load: > 0.57

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$

Expected service life time

at operation temperatures at t_{c} point

	Ref. No. 186204	
t_{c} temperature	$75^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
hrs.	50,000	100,000

Safety features

Electronic short-circuit protection
Overload and temperature protection: reversible
Protection against "no load" operation
Degree of proteciton: IP20

Protection class II

K39.1

Max.	Type	Ref. No.	Mains voltage	Output	Mains	Current	Ambient	Casing	Weight
output			$50,60 \mathrm{~Hz}$	voltage	current	output	temperature $t_{\text {a }}$	temperature t_{c}	
W									

K39.1 - Dimensions (L×W XH): $\mathbf{1 0 3 . 5 \times 3 6 \times 2 2 ~ m m}$

| $12 \pm 0,6$ | 120 | $0.0-1.0$ | -20 to 50 | 75 | 60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

LED Constant Voltage Devices for LED Modules 12 V

EasyLine

LED Constant
Voltage Drivers
$12 \mathrm{~V} / \max .15 \mathrm{~W}$ and max. 30 W
The slim LED constant-voltage drivers are
designed for use in applications with capacity range of up to 15 W or 30 W .

Electronic characteristics

Power factor at full load:

Expected service life time

at operation temperatures at ${ }^{t} \mathrm{c}$ point

	Ref. No. 186413,186457	
t_{c} temperature	$80^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
hrs.	30,000	50,000

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$

Safety features

Short-circuit protection: electronic
Overload protection
Protection against "no load" operation
K52
Degree of protection: IP20
Protection class I
SELV

K53

Products under development; preliminary technical datas

Max. output W	Type	Ref. No.	Mains voltage $50,60 \mathrm{~Hz}$ V	Output voltage V	Mains current mA	Output current A	Ambient temperature ta ${ }^{\circ} \mathrm{C}$	Casing temperature t_{c} ${ }^{\circ} \mathrm{C}$	Efficiency at full load $\%(230 \mathrm{~V})$	Weight g
K52-Dimensions (L×W \times H): 123x45x 192 mm										
15	EDXe 115/12.038	186413	220-240	12 ± 0.5	85-75	0.0-1.25	- 15 to 45	80	83	170
K53 - Dimensions (LxW xH): 153x41x32 mm										
30	EDXe 130/12.043	186457	220-240	12 ± 0.5	165-150	0.0-2.5	- 15 to 45	80	83	170

LED Constant Voltage Devices for LED Modules 12 V

ComfortLine

 LED Constant Voltage Drivers$12 \mathrm{~V} / \max .50 \mathrm{~W}$ and max. 70 W
The compact LED constant-voltage drivers are designed for use in applications with medium capacity range of up to 50 W or 70 W .

Electronic characteristics

Power factor at full load: > 0.97

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
(EDXe 150: secondary 0 Hz)

Expected service life time
at operation temperatures at t_{c} point

	Ref. No. all types	
t_{c} temperature	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
hrs.	50,000	100,000

K30 / K30.1

K30 / K30.1 with cord grip

Max. output W	Type	Ref. No.	Mains voltage $\begin{aligned} & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Output voltage V	Mains current mA	Current output A	Ambient temperature ta ${ }^{\circ} \mathrm{C}$	Casing temperature tc ${ }^{\circ} \mathrm{C}$	Weight 9
K30 - Dimensions (Lx W x H): $187 \times 60 \times 36 \mathrm{~mm}$									
50	EDXe 150/12.034	186216	220-240	$12,1 \pm 0,24$	260-230	0.0-4.2	-40 to 45	70	375
K30.1 - Dimensions (LxW x H): $\mathbf{2 0 0 \times 6 1 \times 4 9 \mathrm { mm }}$									
70	EDXe 170/12.011	186112	220-240	$12,1 \pm 0,24$	365-335	0.0-5.8	-20 to 45	70	340
K30 with cord grip - Dimensions (LxW x H): $\mathbf{2 2 4 \times 6 0 \times 3 6 ~ m m ~}$									
50	EDXe 150/12.034	186217	220-240	$12,1 \pm 0,24$	250-240	0.0-4.2	-40 to 45	70	425
K30.1 with cord grip - Dimensions (LxW x H): $\mathbf{2 4 5 \times 6 1 \times 4 9 \mathrm { mm }}$									
70	EDXe 170/12.012	186113	220-240	$12,1 \pm 0,24$	365-335	0.0-5.8	-20 to 45	70	360

LED Constant Voltage Devices for LED Modules 12 V

ComfortLine LED Constant Voltage Drivers

12 V / max. 70 W - IP67
These LED constant-voltage drivers are designed for use in IP67 applications with medium capacity range of up to 70 W .

Electronic characteristics

Power factor at full load: > 0.97

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$

Expected service life time

at operation temperatures at t_{c} point

	Ref. No. 186114	
t_{c} temperature	$70^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
hrs.	50,000	100,000

Preassembled connection leads
primary side: $5 \times 1 \mathrm{~mm}^{2}$, length: 200 mm
secondary side: $2 \times 1 \mathrm{~mm}^{2}$, length: 200 mm

Safety features

Electronic short-circuit protection
Overload and temperature protection: reversible
Protection against "no load" operation
Degree of protection: IP67
Protection class I

SELV-equivalent

K37 with cord grip

K37 with cord grip - Dimensions ($\mathbf{~} \times \mathbf{W} \mathbf{x H}$): $\mathbf{2 7 5 \times 7 9 . 1 \times 5 1 ~ m m}$

70	EDXe $170 / 12.013$	$\mathbf{1 8 6 1 1 4}$	$220-240$	12.1 ± 0.24	$365-335$	$0.0-5.8$	-20 to 45	70	515

EMERGENCY LIGHTING DEVICES FOR LED APPLICATIONS

ELECTRONIC EMERGENCY LIGHTING DEVICES FOR LED APPLICATIONS

For nominal operating periods of 1 hour or 3 hours

Emergency lighting systems spring to life any time normal main lighting systems fail. Emergency lighting is designed to ensure that staff can safely leave any rooms and that there is sufficient lighting to illuminate rescue paths/routes as well as to avoid panic situations.

VS emergency lighting devices are designed for use with LED applications and can be operated as part of a combined system with electronic LED drivers.

VS emergency lighting devices test the presence of and the charge left on batteries during regular cycles and display the existing status via a bi-colour LED (self-testing function). This both simplifies battery maintenance and ensures necessary emergency lighting in the event of a mains power cut. During normal operation, the batteries are recharged with mains power.

Emergency Lighting
 Modules for 3 Hours Operating Time

50, $\mathbf{1 3 0}$ or $\mathbf{2 2 0}$ V voltage output

VS emergency lighting modules are suitable for LED luminaires.
Dimensions ($\mathrm{L} \times W \times H$): $210 \times 31.4 \times 21.5 \mathrm{~mm}$
Fixing hole distance: 205.5 mm
Ambient temperature: 5 to $50^{\circ} \mathrm{C}$

Electrical characteristics

Power consumption: 4 VA
Constant output: 3 W
Weekly automatic self-diagnosis
and daily testing of system status
Battery charge is checked during regular
testing cycles.
Optical status display via two-colour

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
LED emergency light devices must be connected
in line with the installation manual.

Technical notes - Rechargeable batteries

Choice of rechargeable battery depends on
the operating device.
Charging time of rechargeable batteries: max. 24 hrs. Rechargeable batteries: nickel-cadmium (NiCd)

Safety features

Protection class I

M5.1

LED

Rechargeable batteries

Degree of protection: IP20
SELV (186498)

Type	Ref. No. EL Module	Ref. No. Battery	Battery type	Nominal operat- ing period (hrs.)	Mains current at $230 \mathrm{~V}(\mathrm{~mA})$	Current output (mA)	Voltage output (V)	Weight (g) EL Module	Battery

M5.1-Dimensions (L $\mathbf{x W} \mathbf{~ X H}$): $\mathbf{2 1 0 \times 3 1 . 4 \times 2 1 . 5 ~ m m}$

EMCc 180.003	$\mathbf{1 8 6 4 9 8}$	$\mathbf{1 8 8 8 2 4}$	$4.8 \mathrm{~V} / 4.5 \mathrm{Ah}$	3	22	$250-60$	$12-50$	145	490
EMCc 180.004	$\mathbf{1 8 6 4 9 9}$	$\mathbf{1 8 8 8 2 4}$	$4.8 \mathrm{~V} / 4.5 \mathrm{Ah}$	3	22	$150-23$	$20-130$	145	490
EMCc 180.005	$\mathbf{1 8 6 5 0 0}$	$\mathbf{1 8 8 8 2 4}$	$4.8 \mathrm{~V} / 4.5 \mathrm{Ah}$	3	22	$100-13$	$30-220$	145	490

Holders for rechargeable batteries
 for emergency LED lighting modules

It is recommended to use two holders per rechargeable battery to ensure optimum hold.
Material: PBT
For rechargeable battery type: $4.8 \mathrm{~V} / 4.5 \mathrm{Ah} \mathrm{NiCd}$

Ref. No.: 188828

Emergency Lighting Modules for 1 Hour Operating Time

50, $\mathbf{1 3 0}$ or $\mathbf{2 2 0}$ V voltage output

VS emergency lighting modules are suitable for LED luminaires..
Dimensions ($\mathrm{L} \times W \times H$): $210 \times 31.4 \times 21.5 \mathrm{~mm}$
Fixing hole distance: 205.5 mm
Ambient temperature: 5 to $50^{\circ} \mathrm{C}$

Electrical characteristics

Power consumption: 3.5 VA
Constant output: 3 W
Weekly automatic self-diagnosis
and daily testing of system status
Battery charge is checked during regular
testing cycles.
Optical status display via two-colour

Connection details

Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
LED emergency light devices must be connected
in line with the installation manual.
Technical notes - Rechargeable batteries
Choice of rechargeable battery depends on
the operating device.
Charging time of rechargeable batteries: max. 24 hrs. Rechargeable batteries: nickel-cadmium (NiCd)

Safety features

Protection class I
Degree of protection: IP20
SELV (186495)

Type	Ref. No. EL Module	Ref. No. Battery	Battery type	Nominal operating period (hrs.)	Mains current $\text { at } 230 \mathrm{~V}(\mathrm{~mA})$	Current output (mA)	Voltage output (V)	Weight (g) EL Module	Battery
M5.1-Dimensions (LxW xH): $\mathbf{2 1 0 \times 3 1 . 4 \times 2 1 . 5 ~ m m ~}$									
EMCc 60.000	186495	188823	$4.8 \mathrm{~V} / 1.8 \mathrm{Ah}$	1	16	250-60	12-50	145	200
EMCc 60.001	186496	188823	$4.8 \mathrm{~V} / 1.8 \mathrm{Ah}$	1	16	150-23	20-130	145	200
EMCc 60.002	186497	188823	4.8V/1.8Ah	1	16	100-13	30-220	145	200

Holders for rechargeable batteries
 for emergency LED lighting modules

It is recommended to use two holders per rechargeable battery to ensure optimum hold.
Material: PC
For rechargeable battery type: $4.8 \mathrm{~V} / 1.8 \mathrm{Ah} \mathrm{NiCd}$

Ref. No.: 188827

Rechargeable batteries

LED

LED LAMPS

MR16, AR111,
PAR30, PAR38, GU10

LED - THE GREEN FUTURE LIGHTING

LEDs contain no mercury and are low on energy consumption, as a result of which they lead the field when it comes to "green lighting". Thanks to their eco-friendly properties, they can make a valid contribution to reducing your carbon footprint and countering the greenhouse effect. Moreover, LEDs start instantaneously at full brightness and are available in many colours.

In addition to providing UV- and IR-free light, LEDs are vibration-proof and have a very long service life that further increases the overall efficiency of any lighting system. As LED lamps are now powerful enough to replace both incandescent and low-voltage halogen lamps, they are becoming increasingly popular beyond the field of decorative lighting.

Low-voltage LED Lamps

Suitable for magnetic halogen transformers, electronic halogen converters (12 V AC) and electronic LED drivers (12 V DC)

MR 16, 5.5 W

Design style: COB lens

Operating temperature: 0 to $40^{\circ} \mathrm{C}$
Storage temperature: -20 to $60^{\circ} \mathrm{C}$
Input voltage: 12 V AC/DC
Non dimmable
Base: GU5.3

MR16, 7 W

Design style: COB reflector
Operating temperature: 0 to $40^{\circ} \mathrm{C}$
Storage temperature: -20 to $60^{\circ} \mathrm{C}$
Input voltage: 12 V AC/DC
Dimmable (Magnetic with leading-edge dimmers/
Electronic preferred with trailing-edge dimmers)
Base: GU5.3

Type	Ref. No.	Colour	Colour temperature K	$\begin{array}{\|l\|l\|} \hline \mathrm{CRI} \\ \mathrm{R}_{\mathrm{a}} \\ \hline \end{array}$	$\begin{aligned} & \text { Luminous flux } \\ & \text { Im } \\ & \hline \end{aligned}$	Light intensity cd	Beam angle $\left({ }^{\circ}\right)$	Field angle (${ }^{\circ}$)	Power factor	Power W	Energy efficiency
MR16, 5.5 W											
MR16-5-3000-24-III	553212	warm white	3000	≥ 80	350	1300	24	48	0.7	5.5	A
MR16-5-3000-36-III	553213	warm white	3000	≥ 80	350	700	36	72	0.7	5.5	A+
MR16, 7 W											
MR16-7-3000-24-III	553214	warm white	3000	≥ 80	500	1280	24	48	0.9	7.0	A
MR16-7-3000-36-III	553215	warm white	3000	≥ 80	500	1000	36	72	0.9	7.0	A

Note: Further colour temperatures are available on request.

Typical luminance of MR16 at 1, 2 and 3 meters

Intensity (lux)												
Colour	MR16, 5.5 W						MR16, 7 W					
temperature	24°			36°			24°			36°		
K	1 m	2 m	3 m	1 m	2 m	3 m	1 m	2 m	3 m	1 m	2 m	3 m
Warm White 3000 K	1300	325	140	700	175	80	1280	320	150	1000	250	110

Typical light distribution curves

MR16, 5.5 W 24°

MR16, 5.5 W 36°

MR 16,7 W 24°

MR 16, 7 W 36°

LED Lamps

Replacement for low-voltage incandescent lamps

Suitable for 12 V AC magnetic transformers,
12 V DC electronic drivers and
12 V AC electronic converters

AR111, 16 W

Operating temperature: -20 to $40^{\circ} \mathrm{C}$
Storage temperature: -40 to $60^{\circ} \mathrm{C}$
Input voltage: $12 \mathrm{~V} \mathrm{AC/DC}$
Not dimmable
Base: G53

AR111, 13 W

Operating temperature: -20 to $40^{\circ} \mathrm{C}$
Storage temperature: -40 to $60^{\circ} \mathrm{C}$
Input voltage: 12 V AC/DC
Phase-cut dimmable (trailing-edge dimmers are preferred)
Base: G53

| Type | Ref. No. | Colour | Colour temperature
 K | CRI
 R_{a} | Luminous flux
 lm | Light intensity
 cd | Beam angle
 0 | Field angle
 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AR111, 16 W | | | | | | | | |

AR111, 16 W
AR111-16-3000-24-III
$\mathbf{5 5 6 7 9 4}$
AR111-16-3000-36-III
$\mathbf{5 5 6 7 9 5}$

AR111, 13 W

AR 111 -13-3000-24-III	556796	warm white	3000	≥ 80	800	2600	24	48	> 0.9	13	A
AR 11 1-13-3000-36-III	556797	warm white	3000	≥ 80	800	1400	36	72	> 0.9	13	A

Further colour temperatures are available on request.

Typical luminance of AR 111 at 1, 2 and 3 meters

Intensity (lux)												
Colour	AR111, 16 W						AR111, 13 W					
temperature	24°			36°			24°			36°		
K	1 m	2 m	3 m	1 m	2 m	3 m	1 m	2 m	3 m	1 m	2 m	3 m
Warm White 3000 K	3200	800	360	1600	400	180	2600	650	290	1400	350	160

Typical light distribution curves

AR $111,24^{\circ}$

AR $111,36^{\circ}$

Electronic Converters for LED Lamps 12 V

You will find LED converters for the LED lamps MR 16
and AR111 on page 209-212.

Important notice for LED lamps for replacement of low-voltage halogen incandescent lamps

- Do not connect more than one unit to one transformer
- Do not use in ambient temperatures of more than $40^{\circ} \mathrm{C}$
- Unsuitable for installation in enclosed or airtight luminaires
- For indoor use only
- Unsuitable for use outdoors or in high-moisture environments

Important notice for LED lamps for replacement of mains voltage incandescent lamps

- Unsuitable for operation with an additional driver
- Integrated high-frequency driver
- Do not use in ambient temperatures of more than $40^{\circ} \mathrm{C}$
- Unsuitable for installation in enclosed or airtight luminaires
- For indoor use only
- Unsuitable for use outdoors or in high-moisture environments
- Dimmable with phase-cutting dimmers (E27 PAR and GU 107 W lamps only); minimum dimmer load has to be respected. The compatibility of the lamp to the dimmer has to be confirmed prior to installation to avoid flickering and/or noises Trailing-edge dimmers are preferred.

Caution: Always disconnect equipment from the mains before replacing lamps!

VS LED Lamps - Mains Voltage Replacement

LED Lamps

With integrated driver for replacement of mains voltage halogen incandescent lamps

LED lamps made by Vossloh-Schwabe will fit most standard E27 and GU10 bases. These low-power, high-brightness and highly eco-friendly lamps are sure to improve the overall efficiency of your lighting system

PAR30, 12 W

Operating temperature: -20 to $40^{\circ} \mathrm{C}$
Storage temperature: -40 to $60^{\circ} \mathrm{C}$
Input voltage: 220-240 V AC
Phase-cut dimmable (trailing-edge dimmers are preferred) Base: E27

PAR38, 17 W

Operating temperature: -20 to $40^{\circ} \mathrm{C}$
Storage temperature: -40 to $60^{\circ} \mathrm{C}$

Input voltage: 220-240 V AC
Phase-cut dimmable (trailing-edge dimmers are preferred)
Base: E27

| Type | Ref. No. | Colour | Colour temperature
 K | CRI
 R_{a} | Luminous flux
 Im | Light intensity
 cd | Beam angle
 \circ | Field angle
 0 | Power
 W | Energy
 efficiency |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

PAR30, 12 W										
PAR30-12-2700-38-II	549107	warm white	2700	≥ 80	420	3320	20	38	12	A
PAR30-12-3000-38-II	549108	warm white	3000	≥ 80	460	3670	20	38	12	A
PAR30-12-4000-38-II	549109	neutral white	4000	≥ 75	570	4530	20	38	12	A
PAR30-12-6000-38-II	549110	cool white	6000	≥ 70	680	5400	20	38	12	A
PAR30-1 2-2700-60-11	549111	warm white	2700	≥ 80	420	980	40	60	12	A
PAR30-1 2-3000-60-11	549112	warm white	3000	≥ 80	460	1200	40	60	12	A
PAR30-12-4000-60-11	549113	neutral white	4000	≥ 75	570	1325	40	60	12	A
PAR30-1 2-6000-60-11	549114	cool white	6000	≥ 70	680	1580	40	60	12	A
PAR38, 17 W										
PAR38-17-2700-38-II	549131	warm white	2700	≥ 80	560	4425	20	38	17	A
PAR38-17-3000-38-11	549133	warm white	3000	≥ 80	630	5000	20	38	17	A
PAR38-17-4000-38-11	549134	neutral white	4000	≥ 75	720	5700	20	38	17	A
PAR38-17-6000-38-11	549136	cool white	6000	≥ 70	790	6300	20	38	17	A
PAR38-17-2700-60-II	549138	warm white	2700	≥ 80	560	1350	40	60	17	A
PAR38-17-3000-60-11	549140	warm white	3000	≥ 80	630	1500	40	60	17	A
PAR38-17-4000-60-11	549141	neutral white	4000	≥ 75	720	1770	40	60	17	A
PAR38-17-6000-60-11	549142	cool white	6000	≥ 70	790	1900	40	60	17	A

VS LED Lamps - Mains Voltage Replacement

Typical luminance of PAR30, PAR38 at 1, 2 and 3 meters

Intensity (lux)												
Colour	PAR30, 12 W						PAR38, 17 W					
temperature	20 ${ }^{\circ}$			40°			20°			40°		
K	1 m	2 m	3 m	1 m	2 m	3 m	1 m	2 m	3 m	1 m	2 m	3 m
Warm White 2700 K	3320	830	368	980	245	108	4425	1106	491	1350	337	150
Warm White 3000 K	3670	918	408	1200	300	133	5000	1250	566	1500	375	167
Neutral White 4000 K	4530	1133	503	1325	331	147	5700	1425	633	1770	443	197
Cool White 6000 K	5400	1350	600	1580	395	176	6300	1575	700	1900	475	211

Typical light distribution curves of PAR30, PAR38 lamps

PAR30, $12 \mathrm{~W} 20^{\circ}$

PAR30, $12 \mathrm{~W} 40^{\circ}$

PAR38, $17 \mathrm{~W} 20^{\circ}$

PAR38, $17 \mathrm{~W} 40^{\circ}$

VS LED Lamps - Mains Voltage Replacement

Mains Voltage LED Lamps

With integrated driver

GU10, 5.5 W
Design style: COB lens
Operating temperature: -20 to $40^{\circ} \mathrm{C}$

Storage temperature: -40 to $60^{\circ} \mathrm{C}$
Input voltage: 220-240 V AC
Non dimmable

Base: GU10

GU10, 7 W

Design style: COB reflector
Operating temperature: -20 to $40^{\circ} \mathrm{C}$
Storage temperature: -40 to $60^{\circ} \mathrm{C}$
Input voltage: 220-240 V AC
Phase-cut dimmable (trailing-edge dimmers are preferred)
Base: GU 10

| Type | Ref. No. | Colour | Colour temperature
 K | CRI
 R_{a} | Luminous flux
 Im | Light intensity
 cd | Beam angle
 0 | Field angle
 0 | Power
 factor | Power
 W | efficiency |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

GU10-5-3000-24-III	553218	warm white	3000	≥ 80	350	1300	24	48	0.5	5.5	A+
GU10-5-3000-36-1II	553219	warm white	3000	≥ 80	350	700	36	72	0.5	5.5	A+

GU10, 7 W

GU10-7-3000-24-III	553220	warm white	3000	≥ 80	450	1000	24	48	0.9	7	A+
GU 10-7-3000-36-III	553221	warm white	3000	≥ 80	450	800	36	72	0.9	7	A+

Further colour temperatures are available on request.

Typical luminance of GU 10 at 1, 2 and 3 meters

Intensity (lux)												
Colour	GU10, 5.5 W						GU10, 7 W					
temperature	24°			36°			24°			36°		
K	1 m	2 m	3 m	1 m	2 m	3 m	1 m	2 m	3 m	1 m	2 m	3 m
Warm White 3000 K	1300	325	140	700	175	80	1000	250	120	800	200	90

Typical light distribution curves

GU10, 5,5 W 24°

GU10, 5,5 W 40°

GU10, 7 W 24°

GU10, 7 W 36°

VS LED Lamps - Mains Voltage Replacement

Mains Voltage LED Lamps

With integrated driver

GU10, 4 W

Design style: SMD reflector
Operating temperature: -20 to $40^{\circ} \mathrm{C}$
Storage temperature: -40 to $60^{\circ} \mathrm{C}$
Input voltage: 220-240 V AC
Non dimmable

Base: GU10

GU10, 4.5 and 6 W

Design style: SMD reflector
Operating temperature: -20 to $40^{\circ} \mathrm{C}$
Storage temperature: -40 to $60^{\circ} \mathrm{C}$
Input voltage: 220-240 V AC
Phase-cut dimmable (trailing-edge dimmers are preferred)
Base: GU10

Type	Ref. No.	Colour	Colour temperature K	$\begin{aligned} & \mathrm{CRI} \\ & \mathrm{R}_{\mathrm{a}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Luminous flux } \\ & \text { Im } \\ & \hline \end{aligned}$	Light intensity cd	Beam angle -	Field angle	Power factor	$\begin{aligned} & \text { Power } \\ & \text { W } \\ & \hline \end{aligned}$	Energy efficiency
GU10, 4 W											
GU10-4-3000-36-R	556798	warm white	3000	≥ 80	290	550	36	72	0.4	4	A+
GU10, 4.5 W											
GU10-4.5-2700-36-R	554601	warm white	2700	≥ 80	230	520	36	72	0,4	4,5	A+
GU10, 6 W											
GU10-6-3000-36-R	556799	warm white	3000	≥ 80	380	680	36	72	0.6	6	A+

Further colour temperatures are available on request.

Typical luminance of GU 10 at 1, 2 and 3 meters

Intensity (lux)									
	GU10, 4 W			GU10, 4.5 W			GU10, 6 W		
temperature	$36{ }^{\circ}$			$36{ }^{\circ}$			36°		
K	1 m	2 m	3 m	1 m	2 m	3 m	1 m	2 m	3 m
Warm White 3000 K / 2700 K	550	140	60	520	130	60	680	170	80

Typical light distribution curves

GU10, 36°

General information on LED technology

Thanks to the constant developmental progress made in LED semiconductor technology, the fields of application for LEDs are growing continuously. Mood and architectural lighting, for instance, are already benefiting from the saturated colours of and possibilities afforded by RGB colour control. Ever higher light efficiency levels at higher currents are making white LEDs increasingly attractive for general lighting. Among others, further decisive advantages are great longevity, low energy consumption, neither UV or IR beam nor any hazardous substances.

The key basis of modern optoelectronics is the availability of high-performance LEDs in the three primary colours red, green and blue as well as white and warm white. By assembling these on circuit boards and in combinafion with converters and control systems, lighting systems can be created for the most diverse areas of use.

Vossloh-Schwabe's production of LED modules is based on tried-and-tested COB and SMD technology. This makes it possible to design modules in various dimensions and performance classes. COB (Chip On Board) technology enables super-flat designs with very high chip densities. SMD (Surface Mounted Device Technology) enables convenient, quick and simultaneous assembly of LED and electronics devices.

Working principle of light emitting diodes (LEDs)

An LED semiconductor chip is a semiconductor component that is made up of two differently doped crystallayers, one of which positive (p) and the other negative (n). Light is emitted at the depletion-layer pn boundary for a current flow in forward direction.

An LED converts applied electric energy into visible electromagnetic radiation. The construction and doping of a semiconductor depends on the desired wavelength λ (colour), which can only be monochromatic (red, orange, yellow, green or blue). Colour blends are created by varying the number of LEDs in the individual colours. By adding certain converter materials, LEDs can also produce white and warm white light. This type of light generation using a semiconductor is generally referred to as luminescence, i.e. the generation of cold light whose rays contain no warmth and are emitted without infrared (IR).

Semiconductor materials for LED chips

Irrespective of the specific model, an LED always consists of the following components: leadframe, LED chip and contacting using conductive adhesive and bonding.
While the leadframe can be made of a PCB or ceramics, plastics and other materials, the LED chips are mounted on a die-cut reflector (cathode) using conductive adhesive to achieve higher light intensities with a focused beam of light. The anode is connected using bonding wire.
The optical viewing angle (φ) of an LED is determined by the geometry of the casing including reflector and the position of the chip within the casing.
Small in size and highly resistant against mechanical impact/stress, LEDs are an ideal component for lighting applications. Special modular solutions are also available for applications involving differing ambient conditions (humidity, ambient temperature, etc.).

Technical Details

Visible light within the electromagnetic spectrum

Visible light only accounts for a small part of the electromagnetic spectrum. The part of the electromagnetic spectrum that is visible for humans ranges from ultraviolet ($\lambda=380 \mathrm{~nm}$) to dark red ($\lambda=780 \mathrm{~nm}$).

Light sensitivity of the human eye

By day, the maximum light sensitivity (Km) of the human eye for green is at $\lambda=555 \mathrm{~nm}$ and drops to $\lambda=510 \mathrm{~nm}$ by night. Light sensitivity falls off sharply for both higher and lower wavelengths and only totals 1% of day vision for blue at $\lambda=430 \mathrm{~nm}$ and dark red at $\lambda=720 \mathrm{~nm}$. Thus, in order for the human eye to perceive light of these wavelengths at the same intensity as yellow-green light, its luminance LV needs to be 100 times greater.

Service life of LEDs

The service life of an LED is determined by various factors:

- the degradation rate of the semiconductor material and the encapsulation material
- the applied operating current I_{F}
- the ambient temperature ta during operation and
- the thermal resistance

The term degradation describes the decrease in brightness of an LED chip as a result of the applied forward current during normal operation. Given normal operating conditions ($\mathrm{t}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ at $\left.\mathrm{I}_{\mathrm{F}}=10-30 \mathrm{~mA}\right)$, LEDs will provide a service life of up to 100,000 operating hours (typically 50,000 hours for High Power applications), after which time the brightness of the LED will have dropped typically to 70% of its original value.

Technical Details

LED efficiency

In theory, the internal efficiency of an LED chip is 90\%, meaning that 90\% of the applied electrical energy is converted into visible light at the pn junction layer.

However, a part of the light emitted at the pn junction layer cannot pass through the semiconductor structure and it remains a major technological challenge to optimise the coupling of light out of the chip with the help of innovative designs. These processes determine the external degree of LED efficiency, which denotes the magnitude of visible output that can pass through the semiconductor structure when, for instance, 1 W of electrical power is applied to an LED.

Colour design with LEDs

CIE Chromaticity Chart (CIE 1931 according to DIN 5033)

The CIE chromaticity triangle (standardised CIE 1931 chromaticity chart according to DIN 5033) makes it possible to precisely plot the colours of light sources and objects using two standardised (and previously gauged) chromaticity coordinates, the x and y values. Every point in this chart represents the chromaticity location of a certain chroma. Colours of the same chromaticity only differ from each other in terms of their intensity (colour saturation). The so-called "no-colour point" (white, grey and black, depending on brightness) is situated in the middle of the chart at $x=0.33$ and $y=0.33$.

The boundary of the chromaticity chart is made up of the gamut of spectral colours from 380 nm (blue-violet) to 780 nm (dark red) and the so-called purple boundary. As a result of additive mixing of two or more coloured light sources the chromaticity coordinates are always along a direct line between the starting coordinates.

When using LED lighting, different colours can be created using additive colour mixing (RGB) or by transforming the wavelengths a diode emits by adding a luminescent material in a manner similar to fluorescent lamps. In the case of additive colour mixing/control, appropriate control devices are used to adjust the brightness of the individual LED colours (RGB) to create the desired light colour.

LED system components

- LED light modules
- LED operating devices
- LED control modules
- LED connection technology

When selecting LED components, it is important to take account of their technical specifications, especially with regard to voltage range, current and temperature. VS provides a large range of components for the various areas that all go to build a perfectly matched system. The technical specifications of the various components can be found on the product pages. All VS LED operating devices work with a safety extra-low voltage (SELV) on the output side.

Assembly Instructions for LEDs

For mounting and installing LED components

Mandatory regulations

DIN VDE 0100 Erection of low voltage installations

EN 60598-1 Luminaires - part 1: general requirements and tests
EN 60838-2-2 Miscellaneous lampholders - part 2-2: particular requirements connectors for LED-modules

EN 61347-1 Lamp controlgear - part 1: general and safety requirements

EN 61347-2-11 Controlgear - part 2-11: particular requirements for miscellaneous electronic circuits used with luminaires

EN 61347-2-13 Lamp controlgear - part 2-13: particular requirements for DC or AC supplied electronic controlgear for LED modules

EN 62031 LED modules for general lighting - safety specifications

EN 62384 DC or AC supplied control gear for LED modules - performance requirements

EN 55015 Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment

EN 61000-3-2 Electromagnetic compatibility (EMC) - part 3-2: limits - limits for harmonic current emissions (equipment input current $=16 \mathrm{~A}$ per phase)

EN 61000-3-3 Electromagnetic compatibility (EMC) - part 3-3: limits - limitation of voltage fluctuations and flicker (equipment input current $=16 \mathrm{~A}$ per phase)

EN 61547 Equipment for general lighting purposes - EMC immunity requirements

EN 62471
Photobiological safety of lamps and lamp systems

Mechanical mounting of LED operating devices

Surface Solid, flat surface for good heat discharge required. Avoid mounting protruding surfaces.

Mounting location
Converters must be protected against moisture and heat.

Installation in external luminaires
Luminaire requires water protection rate of $=4$ (e.g. IP54).
Heat transfer If the converter is destined for installation in a luminaire, sufficient heat transfer must be ensured between the converter and the luminaire casing. Converters should be mounted with the greatest possible clearance to sources of heat. During operation, the temperature measured at the t_{c} point of the converter must not exceed the specified maximum value.

Additional mounting instructions for independent LED operating devices

Mounting position Any
Clearance Min. of 0.10 m from walls, ceilings, insulation Min. of 0.10 m from other electronic ballasts Min. of 0.25 m from sources of heat (LEDs or other lamps)

Surface Solid; device must not be allowed to sink into insulation materials

Safety, assembly and handling information for LED modules

Installation and maintenance must always be performed by a qualified fitter in accordance with relevant legislation. The following instructions must be strictly observed. Vossloh-Schwabe Deutschland GmbH accepts no liability for any possible inaccuracies during installation, any non-compliance with these instructions or for any possible omissions in this publication.

In addition, Vossloh-Schwabe Deutschland GmbH reserves the right to make modifications at any time and without prior notification. This data sheet is an integral part of the equipment and its safety devices and should therefore be kept in a safe place for easy reference. The equipment must always be disconnected from the mains prior to undertaking any maintenance work. The safety instructions on the type plate of the components must be strictly observed.

Installation must be conducted at zero potential after disconnection from the line. Modules can have sharp edges or corners. Please take special care during installation to avoid injury. The modules can get hot. Please provide warning notices at the luminaire body if necessary.

LED modules and all PCB components must not be subjected to undue mechanical stress:

- LED modules must not be handled as bulk cargo.
- Shear and pressure stress must be avoided on SMD LEDs and the grouting material of COB LEDs during assembly and handling.

The circuit path must not be damaged or interrupted. We recommend using clips or plastic screws for installation purposes to avoid short circuits and damage to the modules.

The LED modules are not protected against short-circuiting, overloading or overheating. The use of Vossloh-Schwabe electronic power supply units is therefore absolutely essential. Using other power supply units is not recommended. Please ensure you choose the correct electronic power supply unit for the module in question and that the respective output parameters (current, voltage, wattage) are correct (see www.vossloh-schwabe.com).

Safe operation is only possible by the use of external constant-current sources.
Power supply units must be used for operation, in which the following protective measures are ensured:

- Short-circuit protection
- Overload protection
- Overheating protection
- SELV (Safety Extra Low Voltage)

Please ensure standard ESD (electrostatic discharge) protection measures are employed when handling and installing LED modules. Electrostatic discharge can damage LEDs.

Please ensure the correct polarity of the leads prior to commissioning. Reversed polarity can destroy the modules.
The maximum output of the power supply must be observed.
For optimal load of used constant-current driver the LEDSpots can only be connected in series. The quantity of LEDSpots is limited by the sum of forward voltage and the capacity of used constant-current driver.

A parallel connection of the modules is not allowed.

The modules are not protected against dust or moisture (except LEDLine Flex SMD Professional Outdoor, LEDSpots IP54, Roadway Light and Industrial Light IP66/IP67). When LED modules are operated in unduly moist or dusty environments, care must be taken to ensure each module is built into a protective casing in compliance with the correct IP classification or provided with corrosion protection. Damage caused by moisture and/or corrosion will not be recognised as a material or manufacturing defect.

To ensure smooth module operation, care must be taken that module temperatures at the t_{c} point never exceed the maximum values stipulated in the data on catalogue pages.

Due to the numerous installation options and differing operating conditions, no precise installation guidelines can be provided that will ensure the maximum temperature values are never exceeded. In principle, the LED modules can be mounted on a flat metal surface (heat sink) that must, however, provide a large enough surface area to ensure the generated heat can be dissipated to the surroundings.

Under no circumstances may LED modules ever be covered by insulation material or similar. Air ventilation must be ensured.

Please ensure adhesive pads or other products with adhesive areas (LEDLine Flex SMD Professional, LEDLine Flex SMD Professional Outdoor) are only used on dry and clean surfaces that are free of grease, oil, silicone and dirt particles. Owing to the varying application options and different types of surface as well as ambient conditions, VS accepts no liability for the quality of the adhesive bond achieved when mounting these products.

Tests have shown the following chemicals to be harmful to LEDs used on the modules. It is recommended not to use the under-mentioned chemicals anywhere in an LED system. The fumes from even small amounts of these chemicals may damage the LEDs.

- Chemicals that might outgas aromatic hydrocarbons (e.g., toluene, benzene, xylene)
- Methyl acetate or ethyl acetate (i.e., nail polish remover)
- Cyanoacrylates (i.e., "Superglue")
- Glycol ethers
(including Radio Shack ${ }^{\circledR}$, Precision Electronics Cleaner - dipropylene glycol monomethyl ether)
- Formaldehyde or butadiene (including Ashland PLIOBOND® adhesive)
- Dymax 984-LVUF conformal coating
- Loctite Sumo glue
- Gorilla glue
- Clorox bleach
- Clorox Clean-Up cleaner spray
- Loctite 384 adhesive
- Loctite 7387 activator
- Loctite 242 threadlocker

DALI LIGHT CONTROL GEAR AND ACCESSORIES

INTELLIGENT INDOOR LIGHTING

The VS Light Controllers are light management systems that were developed as a convenient means of controlling and regulating light.

Communication between the Light Controller and the luminaire is achieved using the standard DALI protocol. The Light Controllers comply with the standard IEC 62386:2008. Within this standard, the number of maximum possible luminaires is defined as 64 per DALI line. The controllers are designed for mounting on a 35 mm DIN installation rail.

The entire lighting system was designed to permit easy and convenient configuration. Any later modifications to the system can thus be carried out without any problems.

Typical applications

- Offices, industrial spaces and warehouses
- Supermarkets
- Public buildings (e.g. schools and hospitals)
- Stairwells and hallways
- Sanitary facilities

Lics

- Adjustment of lighting levels to suit human needs
- Energy savings and cost reductions
- More convenience thanks to automation

Light Controller IP/DALI and LightBox

Walltransmitter

Light Controller IP/DALI, LightBox and DALI Push-button Interface

Light Controller L / LS and LW / LSW

Antennas

Light Controller S / XS
Extender / Extender Flex

MultiSensors

Industry Sensors High Bay

Technical details

Light Controller IP/DALI
Light Controller L / LS and LW / LSW
Light Controller S / XS
Extender
MultiSensors
Industry Sensors High Bay

243-255
243-244
245-246
247-249
249-250
250-251
252-255

Overview of the LiCS Indoor System

Product matrix
MultiSensors
for integration into the
distribution board

Functions	Light Controller		Light Controller		Light Controller S	Light Controller XS
	L	LS	LW	LSW		
Control options	single and group	group	single and group	group	broadcast	broadcast
No. of groups	max. 16		max. 16		-	-
No. of operating devices (DALI-EBs, LiCS-Extender, HB sensors)	max. 64		max. 64		max. 64	max. 10
No. of MultiSensors	max. 36		max. 36		max. 36	max. 4
Motion detection (automatic and semi-automatic)	-		-		-	-
Constant light control	-		-		-	-
Scene settings	-	-	-	-	-	-
Push function (on/off, up and down)	-		-		-	-
Dimming (only up or only down)	-		-		-	-
ON/OFF function	-		-		-	-
Overriding central control	-		-		-	-
Stairwell function (timer)	-		-		-	-
With integrated timer clock	-	-	-	-	-	-
Discourage burglaries	-	-	-	-	-	-
System analysis software	-		-		-	-
Password protection	-		-		-	-
Minimising standby losses	-		-		-	-
Menu navigation in	German, English, French, Italian, Spanish		German, English, French, Italian, Spanish		-	-
Configuration using	rotary push key and screen		rotary push key and screen		dip switch	dip switch

Overview of the LiCS Indoor System Network

* Functionality limitations of the system possible; please observe the notes in the controller operation manuals.

SYSTEM INFORMATION

Server (Win 7) or LightBox
Optional: Access Point for operating elements

FUNCTIONS LIGHT CONTROLLER IP/DALI

- Network-compliant
- Intelligent networking of DALI devices

Lighting control:

- 3 level Motion detection (automatic and semi-automatic)
- Constant light control
- Intelligent day- and time-dependent switching functions
- Astro function
- Scene settings
- Push function (on/off, up and down)
- Dimming (only up or only down)
- ON/OFF function, ON function, OFF function
- Light value
- Stairwell function (timer)
- Retrieval of various sensor-gauged values
- Logic functions
- Push-key and operating element
- Classic push buttons
- Touch4Light
- Tablet
- EnOcean
- DAll buttons
- Documentation
- Device documentation
- Save/Load
- Automated error detection (email report
- User accounts (password protection)
- Language:
- German
- English
- Further language on request
- Further functions
- Minimising standby losses
- Intelligent device exchange

Light Controller IP/DALI

For installation in a distribution board

This light control gear (gateways) is designed for installation in a distribution board.

Technical notes

Configuration interface: via browser via tablet/PC Ambient temperature ta: 5 to $50^{\circ} \mathrm{C}$

$$
\left(186484,186485 \text { ta: } 5 \text { to } 45^{\circ} \mathrm{C}\right)
$$

Push-in terminals with lever opener: $0.5-2.5 \mathrm{~mm}^{2}$ Degree of protection: IP20, Protection class I
RFI-suppressed
The MultiSensors and DALI push-button interfaces are connected directly to the DALI bus

Connections

- Mains connection: 220-240 V AC, 50-60 Hz
- Max. power consumption 12 W
- 2xRJ45 (Ethernet TCP/IP) 10/100MBit/s, Daisy Chain
- 1 DALI bus: max. current on DALI bus $=200 \mathrm{~mA}$ (see the respective data sheet for current consumption of individual components)
- As a standard DALI bus is not SELV-compliant, the DALI cable must be rated for mains voltage.
- The DALI bus features reversible electronic overload and short-circuit protection.
- 8 independently configurable push button inputs, cables must be rated for mains voltage
- Minimising standby losses
- For Light Controllers with RF operation Antenna jack: radio signal with a frequency of 868 MHz

Software download

www.vossloh-schwabe.com/en/home/products/ light-management-systems-for-indoor-applications/ light-controller.html

System architecture

Light Controller	Ref. No.	Max. No. of operating devices pcs./controller	No. of MultiSensors or DALl push-butten interfaces (pcs./controller)	EnOcean	Dimensions $\mathrm{mm}(L \times W \times H)$	Horizontal pitches (hp)	Weight g
IP/DALI 2CH	$\mathbf{1 8 6 4 8 4}$	2×64	2×36	no	$180 \times 90 \times 71$	10	340
IP/DALI	$\mathbf{1 8 6 3 3 9}$	64	36	no	$180 \times 90 \times 71$	10	
IP/DALI W 2CH	$\mathbf{1 8 6 4 8 5}$	2×64	2×36	yes	$180 \times 90 \times 71$	10	340
IP/DALI W	$\mathbf{1 8 6 3 4 0}$	64	36	yes	$180 \times 90 \times 71$	10	340

LightBox

For operating Light Controllers of the IP/DALI series

The LightBox serves to manage the tasks performed by the Light Controller IP and is pre-configured for plug-and-play operation.

Technical notes

- Mains switch for powering up the LightBox lactivates automatically once mains power is restored following a power cut).
- Indicator: green status LED at the front
- As an alternative to client-based configuration (e.g. using a tablet, etc.), a monitor or input device can be connected during operation for configuration purposes.
- Optional wake-on LAN
- The Windows 8.1 N operating system merely needs to be personalised and activated by telephone.

Connections

- Mains switch
- Mains connection with power supply unit
- RJ45 connection (Ethernet)
- $6 \times$ USB
- HDMI output
- Display port
- Wi-Fi antenna

System architecture
LightBox with DHCP
System architecture
LightBox without DHCP

Type	Suitable for	Ref. No.	Max. No. of Light Controller per LightBox (pcs.)	Dimensions (LxWxH) mm	Weight g
LightBox	network- and internet-based operation (as a DHCP client)	$\mathbf{1 8 6 5 1 2}$	5	$127 \times 127 \times 45$	600
LightBox DHCP	stand-alone light management (as a DHCP server)	$\mathbf{1 8 6 5 1 3}$	5	$127 \times 127 \times 45$	600

DALI Push-button Interface

For connecting up to 4 push buttons to a Light Controller IP/DALI

DALI push-button interfaces make it possible to install
push-buttons at any point along the DALI bus without
needing to connect an additional power supply source.
Designed for flush-mounted installation.
For built-in into flushtype boxes
Control input: DALI acc. to IEC 62386:2008
DALI current consumption: 4 mA
With built-in LED (red) for configuration
Dimensions (LxW×H): $32 \times 22 \times 13 \mathrm{~mm}$, weight: 30 g
Connection leads: $0,5 \mathrm{~mm}^{2}$, ferrules on bare end of core

Protection class II

Ref. No.: 186476

Light Controller L/LW and LS/LSW

For installation in a distribution board

This light control gear is designed for installation in a distribution board.

Technical notes

Configuration interface: and rotary push key (on the controller)
Ambient temperature ta: 5 to $50^{\circ} \mathrm{C}$
Push-in terminals with lever opener: $0.5-1.5 \mathrm{~mm}^{2}$ Degree of protection: IP20, Protection class I
RFI-suppressed
The MultiSensors are connected directly
to the DALI bus.

Connections

- Mains connection: 220-240 V AC, 50-60 Hz
- Max. power consumption 9 W
- 1 DALI bus to 3 pairs of terminals: max. current on DALI bus $=200 \mathrm{~mA}$ (see the respective data sheet for current consumption of individual components)
- As a standard DALI bus is not SELV-compliant, the DALI cable must be rated for mains voltage.
- The DALI bus features reversible electronic overload and short-circuit protection.
- 6 independently configurable push button inputs, cables must be rated for mains voltage
- Minimising standby losses
- For Light Controllers with RF operation Antenna jack: Radio signal with a frequency of 868 MHz

General functions

Automatic and semi-automatic motion detection, constant light control, push function, ON/OFF function, stairwell function (timer), system analysis software, password protection
Software languages: German, English, French, Spanish, Italian

Additional functions

Scene settings, control options (single and/or group) (Light Controller L/LW)

Light Controller LW/LWS

Suitable for wireless operation with EnOcean No. of wireless modules: 16 pcs. Antenna needed

DALI Group Configuration Tool

FMH4-rw Ref. No.: 555534

Discourage burglaries, timer clock, control options (group)
(Light Controller LS/LSW)

Light Controller	Ref. No.	Max. No. of operating devices pcs./lead	No. of MultiSensors pcs./lead	En Ocean	Dimensions $m m(L \times W \times H)$	horizontal pitches hp	Weight g
L	$\mathbf{1 8 6 1 8 9}$	64	36	no	$126 \times 90 \times 68$	7	2
LS	$\mathbf{1 8 6 2 7 6}$	64	36	no	$126 \times 90 \times 68$	7	2
LW	$\mathbf{1 8 6 1 9 0}$	64	36	yes	$126 \times 90 \times 68$	7	250
LSW	$\mathbf{1 8 6 3 2 3}$	64	36	yes	$126 \times 90 \times 68$	7	250

Lighting Control System for Indoor Applications

Antennas

To supplement LiCS Indoor System

To ensure faultless wireless operation, an antenna must be connected that is set to the respective frequency.

When fitting the antenna, care must be taken that it is not shielded by metal objects, e.g. steel cabinets, radiators, ventilation shafts etc., to ensure optimum signal reception.

The requisite antenna is provided by Vossloh-Schwabe in two models: the screw-base model comes with a detachable connection cable, while the magneticbase model is fitted with a non-detachable connection cable.

Lighting Control System for Indoor Applications

Light Controller S

For independent operation

These light control devices are suitable for independent operation (e.g. in false ceilings).

Technical notes

Configuration interface: dip switch (on the device)
Ambient temperature $\mathrm{t}_{\mathrm{a}}: \mathrm{O}$ to $50^{\circ} \mathrm{C}$
Max. casing temperature tc: $65^{\circ} \mathrm{C}$

Screw terminals: 0.75-2.5 mm²
Degree of protection: IP20, Protection class II
RFI-suppressed
The MultiSensors are connected directly

to the DALI bus.

Connections

- Mains connection: 220-240 V AC/DC, 0/50-60 Hz
- Max. power consumption 6,5 W
- 1 DALI bus : max. current on DALI bus $=200 \mathrm{~mA}$ (see the respective data sheet for current consumption of individual components)
- As a standard DALI bus is not SELV-compliant, the DALI cable must be rated for mains voltage.
- The DALI bus features reversible electronic overload and short-circuit protection.
- 1 configurable push button input: cables must be rated for mains voltage

Functions

Automatic and semi-automatic motion detection,
constant light control, push function (64 EBs synchronously),
ON/OFF function, stairwell function (timer),
control option (broadcast)

Light Controller	Ref. No.	Max. No. of operating devices pcs./lead	No. of MultiSensors pcs./lead	EnOcean	Dimensions $\mathrm{mm}(1 \times W \times H)$	Weight g
S	$\mathbf{1 8 6 2 1 0}$	64	36	no	$175 \times 42 \times 31,5$	

Lighting Control System for Indoor Applications

Light Controller XS

For luminaire installation

These light control devices are suitable for operation in luminaires.

Technical notes

Configuration interface: dip switch (on the device)
Ambient temperature $t_{a}: 5$ to $50^{\circ} \mathrm{C}$
Max. casing temperature tc: $60^{\circ} \mathrm{C}$

Lifetime: 50,000 hrs.
Push-in terminals with lever opener: $0.5-1.5 \mathrm{~mm}^{2}$
Degree of protection: IP20
RFI-suppressed
For luminaires of protection class I and II

The MultiSensors are connected directly to the DALI bus.

Connections

- Mains connection: 220-240 V AC/DC, 0/50-60 Hz
- Max. power consumption 0.8 W
- 1 DALI bus: max. current on DALI bus $=20 \mathrm{~mA}$ (see the respective data sheet for current consumption of individual components)
- As a standard DALI bus is not SELV-compliant, the DALI cable must be rated for mains voltage.
- The DALI bus features reversible electronic overload and short-circuit protection.
- 1 configurable push button input

Functions

Automatic and semi-automatic motion detection,
constant light control, push function (10 EBs synchronously),
ON/OFF function, control option (broadcast)

Light Controller	Ref. No.	Max. No. of operating devices pcs./lead	No. of MultiSensors pcs. $/$ lead	EnOcean	Dimensions $\mathrm{mm}(\mathrm{LxW} \times \mathrm{H})$	Weight g
XS	$\mathbf{1 8 6 2 2 0}$	10	4	no	$83 \times 30 \times 19$	

Lighting Control System for Indoor Applications

Extender

To extend LiCS Indoor system

An extender enables the maximum number of DALL compliant control gear units within a standard DALI system to be increased.

This means the DALI extender is installed and addressed in instead of the ballast. Up to 64 DALI control gear units can be connected to an extender output. All of these control gear units will either respond in the same way to an incoming signal (Ref. No.: 186194) or, given changed characteristics, will transfer values to the addressed DALI control gear units (Ref. No.: 186481).

The extender for DALI systems can only be used in combination with a DALI controller. When DALI commands are received, the extender behaves just like a DALI-compliant ballast.

Technical notes

Configuration interface:
via a DALI controller

Ambient temperature ta: 0 to $50^{\circ} \mathrm{C}$
Max. casing temperature tc: $65^{\circ} \mathrm{C}$
Screw terminals: 0.75-2.5 mm²
Degree of protection: IP20, Protection class II
RFI-suppressed

Connections

- Mains connection: 220-240 V AC/DC, 0/50-60 Hz
- Max. power consumption: 6.5 W
- For DALI signals in acc. with IEC 62386
- DALI current consumption: 2 mA
- 1 DALI bus to 3 terminal pairs: max. current on the DALI bus $=200 \mathrm{~mA}$
- As a standard DALI bus is not SELV-compliant, the DALI cable must be rated for mains voltage.
- The DALI bus features reversible electronic overload and short-circuit protection.

Functions

Connection of up to 64 ballasts to a single DALI address
Extender Flex serves to transfer characteristics, which permit light to be staged in a more flexible manner, to the connected DALI addresses.
Example: group devices can be dimmed to varying degrees

Type	Ref. No.	Max. No. of secondary control gear units per Extender pcs./lead	Functions	Dimensions LxWxH mm	Weight	
Extender	$\mathbf{1 8 6 1 9 4}$	64	Broadcast Classic	Broadcast Flexible: a compilation of characteristics can be made available on request	$175 \times 4 \times 3 \times 31,5$	150
Extender Flex	$\mathbf{1 8 6 4 8 1}$	64	150			

Lighting Control System for Indoor Applications

MultiSensors

To supplement LiCS Indoor system

Daylight and motion sensors increase both energy
savings and convenience.

VS MultiSensors detect both light levels and motion.
In addition, MultiSensors feature a space-saving
design and were specifically developed to work
with VS Light Controllers. No external power supply
is required, as the sensors are supplied via the
DALI bus.

Technical notes

Configuration interface:

> via the Light Controller

Ambient temperature $t_{a}: 0$ to $50^{\circ} \mathrm{C}$
Push-in terminals with lever opener: $0.5-1.5 \mathrm{~mm}^{2}$
DALI current consumption: 4 mA

Functions

Motion detection and monitoring of lighting levels. With built-in LED (red): the light flashes during configuration when the sensor is selected.

MultiSensor FM-E

For ceiling installation
With cord grip
Dimensions ($\varnothing \mathrm{xH}$): $40 \times 43.8 \mathrm{~mm}$
Weight: 30 g
Ref. No.: 186321

MultiSensor SM-E

For surface mounting
Dimensions $(\varnothing \times H)$: $53 \times 48.5 \mathrm{~mm}$
Weight: 30 g

Ref. No.: 186320

MultiSensor IL-E

For luminaire installation
Dimensions $(\varnothing x H)$: $45 \times 31.9 \mathrm{~mm}$
Weight: 30 g
Ref. No.: 186322

Lighting Control System for Indoor Applications

Industrial Sensors High Bay for Industrial Applications

To supplement LiCS Indoor system

Using DALI MovementSensors increases both energy savings and application flexibility.

Vossloh-Schwabe MovementSensors are even capable of detecting motion in rooms with high ceilings (up to 8 m in height). Specifically developed for use with VS Light Controllers, these MovementSensors have been optimised for unprotected installation (HB 65) and to deal with obstructions in the detection field.

VS BrightnessSensors detect light levels in difficult environments that require an IP65 degree of protection. VS Brightness systems do not require an external power supply as the DALI lead can simply be connected through.

The fact that the sensors are connected via the DALI bus now makes it possible - and for the very first time - to manage an entire warehouse with just one Light Controller and to define individually adjustable or uniform lighting levels.

Technical notes

Configuration interface: via the Light Controller Ambient temperature ta: -5 to $50^{\circ} \mathrm{C}$
Push-in terminals with lever opener: 0.5-1.5 mm²
DALI current consumption: HB 65: $2 \mathrm{~mA} / \mathrm{IP65}: 4 \mathrm{~mA}$

Functions

Reliable HF motion detection with indication LED (red) (MovementSensor)
Reliable monitoring of light levels with indication LED (red) (BrightnessSensor)

MovementSensor HB 65

For surface mounting
With cord grip
Degree of protection: IP65
Protection class II
Dimensions (LxWxH): $98 \times 73.2 \times 34 \mathrm{~mm}$
Weight: 151 g
Ref. No.: 186311

BrightnessSensor IP65

For surface mounting
With cord grip
Degree of protection: IP65
Protection class II
Dimensions (LxWxH): $98 \times 73 \times 34 \mathrm{~mm}$
Weight: 140 g

Ref. No.: 186370

General safety information

- LiCS products may only be installed and commissioned by authorised and fully qualified staff.
- These instructions must be carefully read before installing and commissioning the system, as this is the only way to ensure safe and correct handling.
- Before any work is carried out on the equipment, it must be disconnected from the mains.
- All valid safety and accident-prevention regulations must be observed.
- The products should never be inexpertly opened as this poses lethal danger due to electrical shock. Repairs may only be undertaken by the manufacturer.
- On no account may the DALI control lead be used to carry mains voltage or any other external voltage as this can destroy individual system components.

Light Controller IP/DALI

- In a distribution board on a $35-\mathrm{mm}$ mounting rail in acc. with DIN 43880; required installation space: 10 hp (horizontal pitches) (180 mm)
- Hook the light controller over the upper edge of the rail using the two mounting notches. Then carefully press the controller onto the lower part of the rail until the mounting spring on the controller snaps into place over the rail. If required, use a screwdriver to help you with the spring.

Removal To remove the controller from the mounting rail, use a screwdriver to loosen the spring and ease the controller over the rail flange from the bottom.

Installation instructions

- Conductor cross-section for all terminals: $0.5-2.5 \mathrm{~mm}^{2}$ for rigid or flexible conductors
- Cable preparation (see right)
- To protect the equipment, a 10 A or 16 A , Type B automatic circuit breaker must be fitted.
- Push button inputs 1-8: cables must be rated for mains voltage; max. cable length $=100 \mathrm{~m}$.
- As a standard DALI bus is not SELV-compliant, the DALI lead must be rated for mains voltage.
- A max. of 64 DALI operating devices in aggregate can be connected as well as up to 36 MultiSensors or DALl push-button interfaces, which in total must not exceed 200 mA . The exact number of components can be found in the manual.
- The power supply and the DALI lead can be laid in a single cable provided the cable does not exceed a maximum length of 100 m , e.g. using $5 \times 1.5 \mathrm{~mm}^{2}$.
- Please observe the maximum lengths of the DALI lead during installation:

	$\mathbf{2 . 5} \mathbf{~ m m}^{\mathbf{2}}$	$\mathbf{1 . 5} \mathbf{m m}^{\mathbf{2}}$	$\mathbf{1} \mathbf{m m}^{\mathbf{2}}$	$\mathbf{0 . 7 5} \mathbf{m m}^{\mathbf{2}}$	$\mathbf{0 . 5 \mathbf { m m } ^ { \mathbf { 2 } }}$
$\mathbf{6 . 2 ~ \Omega ~ m a x . ~}$	300 m	300 m	180 m	130 m	80 m

- The relay contact is a potential-free closing contact. The current load of the relay contact must not exceed an Ohmic load of $I_{\text {max. }}=3 \mathrm{~A}$. When using the standby contact, an additional external power relay should be used.
- Connection to the LightBox (e.g.) is effected via RJ45 (Ethernet TCP/IP) $10 / 100 \mathrm{Mbit} / \mathrm{s}$.
- The two RJ45 ports can be used as a (daisy chain) switch.
- It is not recommended to connect atypical network components of a light management system (e.g. printers) directly to the Light Controller.

Technical Details - Lighting Control System for Indoor Applications

Additional information

- To ensure faultless wireless operation, an antenna must be connected that is set to the respective frequency. This antenna is not included in the scope of delivery.
- Please refer to the manual at www.vossloh-schwabe.com/en/home/products/ light-management-systems-for-indoor-applications.html for exact instructions on how to configure the system using the controller.
- The outputs of different controllers must not be connected with each other.
- To ensure safe operation of the controller, the maximum ambient temperature must not be exceeded.
- Integration of VS Extenders limits the whole system to its basic funcitions for control. Please observe the notes in the appendix of the controller operation manuals.

Circuit diagram of Light Controller IP/DALI

Technical details Light Controller PI/DALI

Light Controller	IP/DA	IP/DALI W	IP/DALI 2 CH	IP/DALI W 2 CH
Ref. No.	1863	186340	186484	186485
Supply voltage	$220-240$ V AC, $50-60 \mathrm{~Hz}$			
Power consumption	12 W			
Ambient temperature t_{a}	5 to $50^{\circ} \mathrm{C}$		5 to $45^{\circ} \mathrm{C}$	
DALI output (da+-)	max. 200 mA current drain		$2 \times$ max. 200 mA current drain	
No. of operating devices (DALI-EBs, LiCS-Extender, HB sensors)	max. 64 pcs. per Controller (expandable with the Extender)		max. 2×64 pcs. per Controller (expandable with the Extender)	
No. of MultiSensors or DALI push-button interfaces	max. 36 pcs.		max. 2×36 pcs.	
RF input	-	Antenna for a reception range of 868 MHz	-	Antenna for a reception range of 868 MHz
Wireless modules	-	All radio buttons with PT radio sensors by EnOcean with 868 MHz	-	All radio buttons with PT radio sensors by EnOcean with 868 MHz
No. of wireless modules	-	max. 16 pcs. with up to 4 buttons	-	max. 16 pcs. with up to 4 buttons
Relais (Output a 1, a2)	250 V , max. 3 A ohmic load			
Push inputs 1-8	$220-240$ V AC, $50-60 \mathrm{~Hz}$			
Degree of protection	IP20			
Protection class	I			
Weight	340 g			
CE requirements	EMC in acc. with EN 61547, RFl in acc. with EN 55015, Safery in acc. with EN 61347-2-11			

Light Controller L/LS and LW/LSW

Installation

- In a distribution board on a $35-\mathrm{mm}$ mounting rail in acc. with DIN 43880; required installation space: 7 hp (horizontal pitches) (126 mm)
- The controller must be installed so the display screen is in the upper left corner.
- Hook the light controller over the upper edge of the rail using the two mounting notches. Then carefully press the controller onto the lower part of the rail until the mounting spring on the controller snaps into place over the rail. If required, use a screwdriver to help you with the spring.

Removal To remove the controller from the mounting rail, use a screwdriver to loosen the spring and

 ease the controller over the rail flange from the bottom.
Installation instructions

- Conductor cross-section for all terminals: $0.5-1.5 \mathrm{~mm}^{2}$ for rigid or flexible conductors
- Cable preparation (see right)
- To protect the equipment, a 10 A or 16 A , Type B automatic circuit breaker must be fitted.
- Push button inputs 1-6: cables must be rated for mains voltage; max. cable length $=100 \mathrm{~m}$.
- As a standard DALI bus is not SELV-compliant, the DALI cable must be rated for mains voltage.
- A max. of 64 DALI operating devices in aggregate can be connected as well as up to 36 MultiSensors, which in total must not exceed 200 mA . The exact number of components can be found in the manual.
- The power supply and the DALI lead can be laid in a single cable provided the cable does not exceed a maximum length of 100 m , e.g. using $5 \times 1.5 \mathrm{~mm}^{2}$.
- Three electrically connected DALI outputs make it easier to connect DALI control gear. Please observe the maximum lengths of the DALI bus during installation:

	$\mathbf{1 . 5} \mathbf{~ m m}^{\mathbf{2}}$	$\mathbf{1} \mathbf{m m}^{\mathbf{2}}$	$\mathbf{0 . 7 5} \mathbf{~ m m}^{\mathbf{2}}$	$\mathbf{0 . 5} \mathbf{~ m m}^{\mathbf{2}}$
$\mathbf{6 . 2 \boldsymbol { \Omega } \mathbf { ~ m a x . }}$	300 m	180 m	130 m	80 m

- The relay contact is a potential-free closing contact. The current load of the relay contact must not exceed an Ohmic load of $I_{\text {max. }}=3 \mathrm{~A}$. When using the standby contact, an additional external power relay should be used.
- Although models of the Light Controller L/LS and LW/LSW feature an antenna-connection jack (located top right on the front), only the jack on the LW/LSW model is functional. This is where the antenna is connected to enable wireless operation (EnOcean) of the Light Controller LW/LSW.

Additional information

- To ensure faultless wireless operation, an antenna must be connected that is set to the respective frequency. This antenna is not included in the scope of delivery.
- Please refer to the manual at www.vossloh-schwabe.com/en/home/products/ light-management-systems-for-indoor-applications.html for exact instructions on how to configure the system using the controller.
- The outputs of different controllers must not be connected with each other.
- To ensure safe operation of the controller, the maximum ambient temperature must not be exceeded.

Circuit diagram of Light Controller L/LS and LW/LSW

Technical details Light Controller L/LS and LW/LSW

Technical Details - Lighting Control System for Indoor Applications

Light Controller S

Installation - Independent installation, e.g. in false ceilings

- Easy and time-saving installation thanks to end caps that snap into place without needing tools.
- Clearance: min. 0.1 m to walls, ceilings, insulation and other electronic devices; min. 0.25 m to sources of heat (e.g. lamps)
- Surface: solid, must not let the controller sink into insulation material
- Fastening: using 4-mm screws

Installation instructions

- Conductor cross-section for all terminals: $0.75-2.5 \mathrm{~mm}^{2}$
- Cable preparation (see right)
- Screw terminals: max. tightening torque $=0.4 \mathrm{Nm}$
- A standard DALI bus only features basic insulation. All DALI cables must be rated for mains voltage.
- A max. of 64 DALI operating devices in aggregate can be connected as well as up to 36 MultiSensors, which in total must not exceed 200 mA . The exact number of components can be found in the manual.
- The power supply and the DALI lead can be laid in a single cable provided the cable does not exceed a maximum length of 100 m , e.g. using NYM $5 \times 1.5 \mathrm{~mm}^{2}$.
Please observe the maximum lengths of the DALI bus during installation:

	$\mathbf{1 . 5} \mathbf{~ m m}^{\mathbf{2}}$	$\mathbf{1} \mathbf{~ m m}^{\mathbf{2}}$	$\mathbf{0 . 7 5} \mathbf{~ m m}^{\mathbf{2}}$	$\mathbf{0 . 5} \mathbf{~ m m}^{\mathbf{2}}$
$\mathbf{6 . 2 \Omega \mathbf { ~ m a x } .}$	300 m	180 m	130 m	80 m

- Push button inputs: cables must be rated for mains power; maximum 100 m .

Light Controller XS

Installation - Any installation location

- Suitable for installation only in dry rooms or in luminaires, cases, casings or similar.

If destined for use in outdoor applications or spaces subject to higher degrees of moisture,
the Light Controller XS must be installed in a casing with a suitable degree of protection

- Fastening with 3 mm or 4 mm screw
- Take care to ensure a solid, flat surface.

Application/Function

- Suitable only for installation in a luminaire; unsuitable for independent operation.
- For constant light control or motion detection, or a combination of both.
- In addition, a target value for constant light control can be set via manual dimming.

Installation instructions

- Conductor cross-section for all terminals: $0.5-1.5 \mathrm{~mm}^{2}$
- Cable preparation (see right)
- A standard DALI bus only features basic insulation. All DALI cables must be rated for mains voltage.
- Operation without sensors:

A max. of 10 DALI operating devices can be connected; no MultiSensors are allowed.

- Operation with sensors:

If one VS MultiSensor is connected a max of 8 DALI ballasts can be connected in addition.

- Push button inputs: cables must be rated for mains power; maximum 15 m .
- Please observe the maximum lengths of the DALI bus during installation:

The DALI lead does not exceed a maximum length of 95 m , e.g. using NYM $5 \times 1.5 \mathrm{~mm}^{2}$

- The power supply and the DALI lead can be laid in a single cable, e.g. using $5 \times 1.5 \mathrm{~mm}^{2}$

3

Technical Details - Lighting Control System for Indoor Applications

Additional information

- The outputs of different Light Controllers S/XS must not be connected with each other
- All control gear that is connected to the output of the DALI Extender is synchronously operated in "broadcast" mode; the output side is not addressed.
- To ensure safe operation of the Light Controller $S / X S$, the maximum casing temperature at the measuring point $\left(t_{c}\right)$ must not be exceeded.
- Please refer to the manual at www.vossloh-schwabe.com/en/home/products/ light-management-systems-for-indoor-applications.html for exact instructions on how to configure the system using the controller.

Circuit diagram of Light Controller S

Circuit diagram of Light Controller XS

Technical Details - Lighting Control System for Indoor Applications

Technical details Light Controller S

Light Controller	S	XS		
Ref. No.	186210	186220		
Supply voltage	220-240 V AC/DC, 0/50-60 Hz			
Power consumption	6.5 W	0.8 W		
Ambient temperature t_{a}	0 to $50{ }^{\circ} \mathrm{C}$			
DALl output (da+-)	max. 200 mA current drain	max. 20 mA current drain		
No. of operating devices (DALI-EBs, LiCS-Extender, HB sensors)	max. 64 pcs. per Controller (expandable with the Extender)	max. 10 pcs. per Controller (without sensors)		
No. of MultiSensors	max. 36 pcs.	max. 4 pcs.		
RF input	-			
Wireless modules	-			
No. of wireless modules	-			
Relais (Output a 1, a2)	-			
Push inputs	220-240 V AC/DC, 0/50-60 Hz			
Degree of protection	IP20			
Protection class	11	\| and		
Weight	150 g	30 g		
CE requirements	EMC in acc. with EN 61547, RFI in acc. with EN 55015, Safety in acc. with EN $61347-2$-11			

Extender

Installation - Independent installation, e.g. in false ceilings

- Easy and time-saving installation due to end caps that snap into place without needing tools
- Clearance: min. 0.1 m to walls, ceilings, insulation and to other electronic devices; min. 0.25 m to sources of heat (e.g. lamps)
- Surface: solid, must not permit the extender to sink into insulation material
- Fastening: using 4 -mm screws

Installation instructions

- Cross-section of primary/secondary conductor: 0.75-2.5 mm²
- Cable preparation (see right)
- Screw terminals: max. tightening torque $=0.4 \mathrm{Nm}$
- Length of the secondary bus cable: max. 300 m
- A standard DALI bus only features basic insulation. All DALI cables must be rated for mains voltage. The power supply and the DALI lead can be laid in a single cable (max. 100 m).
- Mains power cables and DALI cables should not be laid directly parallel to lamp cables $($ min. clearance $=0.25 \mathrm{~m})$.
- A maximum of 64 DALI operating devices in total can be connected

Additional information

- The extender can only be operated if connected to a DALI control unit. Please refer to the respective operating instructions for information on the control unit
- The DALI extender is integrated into the DALI system using the "random address" assignment method.
- Three electrically connected DALI outputs make it easier to connect DALI ballasts. A maximum of 64 DALI operating devices in total can be connected
- The outputs of several extenders must not be connected with each other.
- All control gear that is connected to the output of the DALI Extender is synchronously operated in "broadcast" mode; the output side is not addressed.
- To ensure safe operation of the Extender, the maximum casing temperature at the measuring point $\left(t_{c}\right)$ must not be exceeded.

Technical Details - Lighting Control System for Indoor Applications

Circuit diagram of the Extender

Technical details Extender

Extender	
Ref. No.	186194/186481
Supply voltage	220-240 V AC/DC, 0/50-60 Hz
Power consumption	6.5 W
Control input	DALI in. acc. with IEC 62386-102/-201
DALI output	max. 64 pcs. DALI operating devices or max. 200 mA (expandable with the Extender)
Ambient temperature t_{a}	0 to $50{ }^{\circ} \mathrm{C}$
Casing temperature t_{C}	max. $65^{\circ} \mathrm{C}$
Degree of protection	IP20
Protection class	11
Weight	150 g
CE requirements	EMC in acc. with EN 61547, RFI in acc. with EN 55015, Safety in acc. with EN 61347-2-11

MultiSensors

Installation

SM-E (Surface Mounted)

Prepare the cable accordingly and thread it through the back plate of the sensor at the side or from behind. Attach the back plate in the selected position using the two screws provided, then connect the cable to the sensor. Use two fingers to lightly press the springs of the sensor cover together and allow to lock into place along the guide rails inside the sensor's bottom face (see Fig. 1).

FM-E (Flush Mounted), with or without cord grip
Prepare the cable, connect to the sensor and attach cord grip if appropriate. Use two fingers to lightly press the sensor together and allow to lock into place in the pre-drilled hole (35 mm) in the selected position (see Fig. 2).

IL-E (In Luminaire)

Heed the dimension of the drilling template when inserting the sensor in the metal plate, which is $0.5-1 \mathrm{~mm}$ thick. Allow the sensor to lock into place in the precisely pre-drilled hole in the metal plate. Allow the sensor cover ring to lock into place from the other side in the recesses provided (see Fig. 3).

Fig. 2

Fig. 3

Technical Details - Lighting Control System for Indoor Applications

Installation instructions

- Conductor cross-section of all terminals: $0.5-1.5 \mathrm{~mm}^{2}$ for both rigid and flexible conductors
- Preparation of the sensor cables (see right)
- As a standard DALI bus is not SELV-compliant, cables must be rated for mains voltage.
- The power supply and the DALI lead can be laid in a single cable provided the cable does not exceed a maximum length of 100 m , e.g. using NYM $5 \times 1.5 \mathrm{~mm}^{2}$
Please observe the maximum lengths of the DALI bus during installation:

	$\mathbf{1 . 5} \mathbf{m m}^{\mathbf{2}}$	$\mathbf{1} \mathbf{~ m m}^{\mathbf{2}}$	$\mathbf{0 . 7 5} \mathbf{m m}^{\mathbf{2}}$	$\mathbf{0 . 5} \mathbf{m m}^{\mathbf{2}}$
$\mathbf{6 . 2 ~ \Omega} \mathbf{~ m a x .}$	300 m	180 m	130 m	80 m

Additional information

- VS MultiSensors can only be operated in combination with a VS Light Controller from the LiCS indoor range.
- Please refer to the manual at www.vossloh-schwabe.com/en/home/products/ light-management-systems-for-indoor-applications.html for exact instructions on how to configure the sensors.
- To ensure safe operation of the sensors, the maximum permitted ambient temperature must not be exceeded.

Fig. 4

- The sensor must be positioned to ensure its reception range is not obstructed by objects, furniture, etc.
- See Fig. 4 for the sensor range.

The height specified in Fig. 4 is a reference value. For other and specifically greater heights, it may be necessary to test the sensitivity of the sensors on site as the sensitivity of the motion sensor decreases the higher up it is mounted.

Circuit diagram of Sensors

Technical details MultiSensors

MultiSensor	SM-E	FM-E	IL-E
Ref. No.	186320	186321	186322
Control input	DALI in acc. with IEC 62386		
DALI current consumption	4 mA		
Ambient temperature t_{a}	0 to $50^{\circ} \mathrm{C}$		
Casing temperature t_{c}	max. $50^{\circ} \mathrm{C}$		
Degree of protection	IP20		
Protection class	11		
Weight	30 g		
CE requirements	Safety in acc. with EN 61347-2-11		

MovementSensors HB

Installation MovementSensor HB 65

Prepare the cable accordingly. Open the housing cover and the protective caps for the connections. Thread the connection cables (230 V L, N + DALI control cable) through the protective cap closure and connect with push terminals. Close the protective caps. Before the housing cover is closed, attach the housing with the aid of 4 mm screws in the holes provided. During installation make sure that the sensor component is not touched. Installation position: any
See operating manual for the sensor range.

Installation instructions

- To protect the device, please use a Type B circuit breaker (10 A or 16 A).
- Conductor cross-section of all terminals: $0.5-1.5 \mathrm{~mm}^{2}$ for both rigid and flexible conductors
- Preparation of the sensor cables (see on the right)
- As a standard DALI bus is not SELV-compliant, cables must be rated for mains voltage.
- The power supply and the DALI lead can be laid in a single cable provided the cable does not exceed a maximum length of 100 m , e.g. using NYM $5 \times 1.5 \mathrm{~mm}^{2}$.
Please observe the maximum lengths of the DALI bus during installation:

	$\mathbf{1 . 5} \mathbf{~ m m}^{\mathbf{2}}$	$\mathbf{1} \mathbf{~ m m}^{\mathbf{2}}$	$\mathbf{0 . 7 5} \mathbf{~ m m}^{\mathbf{2}}$	$\mathbf{0 . 5} \mathbf{~ m m}^{\mathbf{2}}$
$\mathbf{6 . 2 \Omega \mathbf { ~ m a x } .}$	300 m	180 m	130 m	80 m

- The sensor must never be placed inside a luminaire.
- The sensor must be installed with a clearance of 1 m to the respective luminaire.

Additional information

- VS HB sensors can only be operated in combination with a VS Light Controller from the LiCS indoor range.
- Please refer to the controller manual for exact instructions on how to configure the sensor.
- To ensure safe operation of the sensors, the maximum permitted ambient temperature must not be exceeded.
- The sensor must be positioned to ensure its reception range is not obstructed by objects, furniture, etc.
- Moving objects e.g. fans may be enough to lead to movement detection
- See Fig. 1 to 3 for detection range.

Fig. 2

Distance	Sensing Range of MovementSensors Wall \quad Ceiling	
4 m	$\$^{4 m}$	
6 m		
8 m		
10 m		-
12 m		-

Circuit diagram of MovementSensors HB

Technical details MovementSensors HB

MovementSensor	HB 65
Ref. No.	186311
Control input	DALI in acc. with IEC 62386
DALI current consumption	2 mA
Ambient temperature ta	-5 to $50{ }^{\circ} \mathrm{C}$
Degree of protection	IP65
Protection class	11
Weight	151 g
CE requirements	Safety in acc. with $\mathrm{EN} 61347-1$ and EN 61347-2-11

Technical Details - Lighting Control System for Indoor Applications

BrightnessSensors IP65

Installation BrightnessSensors IP65
Prepare the cable accordingly. Open the housing cover and the protective caps for the connections. Thread the connection cables (DALI control cable) through the protective cap closure and connect with push terminals. Close the protective caps. Before the housing cover is closed, attach the housing with the aid of 4 mm screws in the holes provided. During installation make sure that the sensor component is not touched.
Installation position: any
See operating manual for the sensor range.

Installation instructions

- \quad Conductor cross-section of all terminals: $0.5-1.5 \mathrm{~mm}^{2}$ for both rigid and flexible conductors
- Preparation of the sensor cables (see Fig. 1)
- As a standard DALI bus is not SELV-compliant, cables must be rated for mains voltage.
- The power supply and the DALI lead can be laid in a single cable provided the cable does not exceed a maximum length of 100 m , e.g. using NYM $5 \times 1.5 \mathrm{~mm}^{2}$.
Please observe the maximum lengths of the DALI bus during installation:

	$\mathbf{1 . 5} \mathbf{m m}^{\mathbf{2}}$	$\mathbf{1} \mathbf{~ m m}^{\mathbf{2}}$	$\mathbf{0 . 7 5} \mathbf{m m}^{\mathbf{2}}$	$\mathbf{0 . 5} \mathbf{m m}^{\mathbf{2}}$
$\mathbf{6 . 2 \Omega} \mathbf{\text { max. }}$	300 m	180 m	130 m	80 m

Additional information

- VS sensors can only be operated in combination with a VS Light Controller from the LiCS indoor range.
- Please refer to the controller manual for exact instructions on how to configure the sensor: www.vossloh-schwabe.com/en/home/products/ light-management-systems-for-indoor-applications.html
- To ensure safe operation of the sensors, the maximum permitted ambient temperature must not be exceeded.
- Installation location: the sensor must detect the differences in the artificial light.

Circuit diagram of BrightnessSensors IP65

Technical details BrightnessSensors IP65

BrightnessSensor	IP65	
Ref. No.	186370	
Control input	DALI in acc. with IEC 62386	
DALI current consumption	4 mA	
Ambient temperature t_{a}	-5 to $50^{\circ} \mathrm{C}$	
Degree of protection	IP65	
Protection class	$\\|$	
Weight	140 g	
CE requirements	Safety in acc. with EN 61347-1 and EN 61347-2-11	

ELECTRONIC CONTROL OF OUTDOOR LIGHTING

LidG
 \author{ - OUTDOOR

}- General lighting in public spaces
- General lighting in public spaces
- Lighting in the vicinity of buildings
- Lighting in tunnels
- Lighting for sports' venues
- Industrial lighting

The lighting solutions provided by Vossloh-Schwabe ensure that local authorities can save energy, achieve sustainable cost reductions and at the same time make a valuable contribution to reducing CO_{2} output. Using various lighting situations as examples, energy savings of up to 80% can be achieved.

Vossloh-Schwabe's light management systems enable centralised control of individual luminaires with the advantage of a constant online link and the ability to monitor the lighting system. But these intelligent, multifunctional VS controllers provide the same savings potential and high flexibility even without online connectivity.

Typical Applications

ECO-FRIENDIY AND ECONOMICAL LIGHTING

Abstract

Many street lighting facilities are outdated and are therefore highly inefficient. This not only results in higher energy requirements, but also more maintenance work and higher investment costs. All this adds up to street lighting accounting for approx. 30-50\% of the entire power consumption recorded by municipal and other types of local authority - which amounts to a huge cost factor for public budgets to cover.

Targeted Use of Light and Optimisation of Maintenance
 Processes

Vossloh-Schwabe's LiCS Outdoor system makes it possible to dim individual luminaires or entire luminaire groups. Depending on the requirements, the degree to which the lighting level is dimmed can be sensorcontrolled or can comply with a preset level; the burn-in periods of discharge lamps can also be taken into consideration.

Considerable savings potential can be harnessed by need-driven programming and/or lighting control. Thanks to the system's convenient remote monitoring functions, it is possible to optimise maintenance processes as well as better plan maintenance work and budget for it in more detail.

Flexible Structure

The complete LiCS Outdoor system is suitable both for new installations as well as for classic retrofits. The particularly flat designs of the controllers enable installation in almost all luminaires, especially luminaires featuring LED technology.

The system enables control of luminaires operated with magnetic ballasts as well as luminaires with up to four dimmable electronic ballasts with a
$1-10 \mathrm{~V}$ or DALI interface.

Lighting Control System for Outdoor Applications

FUNCTIONS OF THE LIGHT CONTROLLERS

MFF (Maintenance Factor Function)
With prolonged service life, light sources suffer a decrease in luminous flux and, as a result, in brightness. But thanks to the maintenance factor function, this can be compensated by the light management system so as to ensure luminous flux remains stable over the lamp's service life and, additionally, save energy. The flux reduction curve can be adjusted to the real luminous flux reduction by 3 support points.

ISD (Intelligent Switching Time Dimming)
During any one night phase, brightness and with that the output of the lighting system can be altered or the luminaire can be switched on/off up to a maximum of 10 times.

LsT (Control input)
In addition, using a control input (e.g. with a push button or motions ensor) the system can be switched to a certain lighting level for a freely configurable period of time.

RCR (Ripple Control Receiver)
Sound frequency reception module for typical sound frequencies of 100 Hz to 1.7 kHz ; TFR protocols on request.

Lighting Control System for Outdoor Applications

Smart Night

Independent, pre-programmed controllers are used for lighting control purposes. These controllers can also be individually reconfigured at a later point in time. In this regard, up to 4 lighting profiles can be transferred to the hand-held control unit and then transferred to each individual controller on site. In this case, data transfer is purely unidirectional.
iMCU - intelligent Multifunctional Controller Unit 260
iCTI - intelligent Configuration Tool 261
iCTI-USB - intelligent Configuration Tool with USB interface 261

Flex Night

New lighting profiles can be transferred to several iMCU-series controllers at the same time. All iMCUs that are installed on the same supply line are then programmed with a new profile, while still allowing individual iMCUs to be excluded from receiving the new profile.

This can be achieved on site using a laptop and the iCTT , or using the iCTT connection at the control point of the street lighting or, remotely, using the iMICO, in which case the iMICO controller would be firmly installed at the control point.
iCTT - intelligent configuration technician tool 262
iMICO - intelligent MidNight controller 263
iSITE MidNight - system software 264
iMCU - intelligent Multifunctional Controller Unit 260
iCTI - intelligent Configuration Tool 261
iCTI-USB - intelligent Configuration Tool with USB interface 261

Managed Night

Power-line technology enables bidirectional data transfer using the 230 V supply line. As a result, controllers can be grouped together to form a high-performance network using just the cables provided (without needing any additional control lines) in almost any environment.

Data can thus be transferred to each controller connected to the network with a very high degree of reliability; if necessary, signal strength is automatically boosted, thus removing any restrictions in terms of distance.
iLC - intelligent luminaire controller (built-in) 265
iPC - intelligent pole controller 266
iDC - intelligent data concentrator 267
iCT - intelligent configuration software for iDC 267
iLUX - intelligent lux meter with a power-line carrier interface 268
iPL-NI - powerline network interface 268
iCCU - intelligent, capacitive coupling unit 269
iBRIDGE - wireless bridge 269
iLIC - intelligent luminaire information centre 270
iOPC - intelligent OPC DA Server 270

Accessories

iHFS - intelligent high-frequency sensor 271
iSCT - intelligent tablet PC 272

iMCU - intelligent Multifunctional Controller Units

For outdoor luminaire control

These light controllers were specifically designed for independent operation to enable control of street lighting or lighting close to buildings.

Depending on the given task, the product can replace one or more individual products. The controllers are suitable for use with almost all electronic ballasts and LED drivers with a DALI or a 1-10 Volt interface. They also enable control of conventional magnetic ballasts that are with coil tapping points without needing any other components.

The control input LST can be used to connect a control phase, a motion detector, a key switch or a light sensor, but can also be used to receive simple data protocols.

Technical Notes

Control output: DALI, 1-10 V or PWM for max. 1 EB, short-circuit-proof
Relay contacts: potential-free (input, opener, closing contact)
Storage temperature: -25 to $85^{\circ} \mathrm{C}$
Operating temperature: -25 to $80^{\circ} \mathrm{C}$
Humidity: non-condensing
Degree of protection: IP20 or IP67
Upgradeable firmware

Galvanic Isolation

The electronic ballast does not feature potential isolation between input and output: as soon as the electronic ballast is connected to the controller, the control input of the electronic ballast is not potential-free.

iMCU - IP20
IP67

IP20 version

IP67 version

Typical Applications

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & \text { V, Hz } \\ & \hline \end{aligned}$	Power consumption mW	Control input LST V	Switching current $A(\lambda=0.8)$	Connection	Weight g
IP20 - Dimensions (LxWxH): 83×30x19 mm							
iMCU IP20	186232	220-230,50	< 500	230	4	Push-in terminals: $0.5-1.5 \mathrm{~mm}^{2}$	30
IP67 - Dimensions (LxØ): $\mathbf{8 5 \times 4 5} \mathbf{~ m m}$							
iMCU IP67	186338	220-230,50	< 500	230	4	9-core lead, 600 mm	250

iCTI - intelligent Hand-held Operating

 DeviceFor subsequent controller configuration

The iCTI features 4 memory cells for different lighting situations.

Standard connection: USB 2
OS: upgradeable firmware
The continually updated programming software can be downloaded at www.vossloh-schwabe.com/en/ home/products/light-management-systems-for-outdoor-applications/smart-night.html Dimensions: $180 \times 65 \times 40 \mathrm{~mm}$
Weight: 0.2 kg
Ref. No.: 186246

For subsequent controller configuration especially for luminaire manufacturing and maintenance Standard connection: USB 2
OS: upgradeable firmware
The continually updated programming software can be downloaded at www.vossloh-schwabe.com/en/ home/products/light-management-systems-for-outdoor-applications/smart-night.html
Ref. No.: 186392 iCTI-USB

iCTT - intelligent
 Configuration Technician Tool

For subsequent configuration of lighting scenes

The push-in terminal delivered along with this port able configuration tool is located on a DIN rail (top-hat section) in the distribution board and is connected to the lighting circuit.

Reconfiguring lighting scenes at a later point in time involves using the push-in terminal and the iCTT's connector to make a connection to a laptop or PC. The MidNight Configurator software is then used to adjust the relevant settings and transfer these new values to the lighting system.

Once the configuration process has been completed, the iCTT is disconnected again and the protective cover of the push-in terminal is replaced.

Technical Notes

Portable use
Dimensions (LxWxH): $103 \times 35 \times 25 \mathrm{~mm}$
Connection to the lighting system:
Push-in terminal with protection cover: MSTB 2.5/4-ST-5.08
Plug: MSTBVK 2.5/4-G-5.08, lead length: 1 mm
Connection to a laptop/PC:
RS-232 One DB9 male (Standard EIA),
lead length: approx. 0.3 m
Operating temperature: -20 to $70^{\circ} \mathrm{C}$
Humidity: $5-90 \%$ RH at max. $50^{\circ} \mathrm{C}$
Degree of protection: IP20

Type	Ref. No.	Voltage AC V, Hz	Power consumption mW	Control input LST V	Switching current $\mathrm{A}(\lambda=0.8)$	Weight g
iCTT	$\mathbf{1 8 6 2 4 1}$	$220-230,50$	<500	230	4	250
iCTT Terminal Block	$\mathbf{1 8 6 3 9 1}$	Terminal block for iCTT				

iMICO - intelligent Multifunctional Controller Units

For outdoor luminaire control

By installing the iMICO in a street-side distribution board and using the MidNight function, it is possible to update the lighting profiles of an iMCU controller or of a dimmable electronic ballast from a central location without needing to install any additional wiring in the street.

This function is typically used in cases that require the lighting profile to be changed several times per year or if it needs to remain possible to deactivate dimmed output periods of a city's lighting system in a targeted manner, e.g. during city festivals or other events.

The web-based iMICO works on the iSITE web platform. To reconfigure a lighting profile, the server sends a text message to the iMICO via the mobile phone network. The iMICO then transfers the new configuration to the connected controllers or MidNight electronic ballasts by switching the mains phase or another free phase on and off. These controllers will even prevent any flickering in luminaires during signal transfer.

Technical Notes

Operating temperature: -20 to $50^{\circ} \mathrm{C}$
Storage temperature: -25 to $75{ }^{\circ} \mathrm{C}$
Humidity during operation: 5-75\%
Protection class I
1 relay contact: potential-free (input, opener, closing contact)
Material: aluminium AlSi 12 (Fe)
Drill holes for cables for $\mathrm{MICO}-\mathrm{BI}$:
2 PG metric fittings $(25 \times 1.5 \mathrm{~mm})$
2 PG metric fittings $(32 \times 1.5 \mathrm{~mm})$
1 PG metric fittings $(20 \times 1.5 \mathrm{~mm})$
1 fixing hole for antenna connection

Interfaces

Transmission: mobile phone network, requires quad band SIM card
Protocols: SMS, GPRS
Internal modem: Telit 862
Internal and external antenna: MMCX

Type	Ref. No.	Voltage AC V, Hz	Max. switching output A / V	Overvoltag protection kV	Degree of protection	Dimensions $\mathrm{LxW} \mathrm{\times H}(\mathrm{~mm})$	Weight g
$\mathrm{iMICO-BI}$	$\mathbf{1 8 6 2 5 0}$	$220-230,50$	$16 / 250$	4	$\mid P 65$	$280 \times 230 \times 112$	4400
iMICO	$\mathbf{1 8 6 2 4 0}$	$220-230,50$	-	2	$I P 20$	$90 \times 65 \times 50$	450

iSITE MidNight intelligent Configuration Software

For programming lighting situations using iMICO

iSITE can be accessed using any PC with an internet browser (preferably Google Chrome) and was developed to configure the iMICO controller. This convenient and quick method enables all lumi-n aires to be reprogrammed with new lighting profiles. The server-based supports Windows Server operating systems. The following actions can be controlled using the software:

- Creating various timer programs
- Group allocation of various iMICOs
- Assignment of groups and timer programs
- Graphic representation (maps) showing the positions of luminaires and iMICOs
- Sending text messages to groups or to individual iMICOs to transfer settings
- Generating notifications (text messages) to confirm that settings were successfully transmitted

Ref. No.: 186244

System requirements

- Memory RAM: 4GB

Memory HD: 2TB

- CPU: min. Dual Core,depending on the scope of the project
- Operating system: Windows server
- Data security: min. RAID 1 recommended RAID 5

iLC - intelligent Luminaire Controller (built-in)

Vossloh-Schwabe's light control units of the "Managed Night" series work with power-line communication using the C / B CENELEC band. Communication occurs in accordance with standardised directives EN 14908-1, EN 14908-3 and the Lonmark ${ }^{\circledR}$ OLC profile (outdoor luminaire controller profile).
iLC can be used as independent control unit in a light management system. The controller is integrated into a LON power-line light management system that requires a network connection to a central module (iDC)

Once installed in a light management system, the controller delivers various performance data and status reports, for example voltage, current, power factor, energy consumption, lighting hours and temperature. Limits must be defined for each measured value, which are then monitored in the controller with a report being transmitted to the master system if limits are exceeded. As a result, the controller itself already intelligently monitors the luminaire. The calibrated performance data are available within a tolerance of 1%

Technical Notes

Dimensions ($\mathrm{L} \times \mathrm{W} \mathrm{WH}$): : $93 \times 58 \times 30 \mathrm{~mm}$
Control output: DALI or $1-10 \mathrm{~V}$ for max. 4 EBs ,

> short-circuit-proof

Bistable relay output: closing contact
Low-voltage control input: $1 \times 5 \mathrm{~V}$ DC
for sensors with "open collector" output or
potential-free relay
Connection terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Storage temperature: -25 to $85^{\circ} \mathrm{C}$
Operating temperature: -25 to $80^{\circ} \mathrm{C}$
Humidity: non-condensing
Degree of protection: IP20

iLC - intelligent Luminaire Controller (built-in)

Control input LST can be used for a control phase, a motion detector, a key switch, a light sensor or, if operated independently, to receive simple protocols.

Galvanic Isolation

The electronic ballast does not feature potential isolation between input and output: as soon as the electronic ballast is connected to the controller, the control input of the electronic ballast is not potential-free.

Typical Applications

Lighting for public spaces
Lighting in the vicinity of buildings
Lighting for tunnels

DPC	MFF	ISD	DOO
$\mathbf{B B}$	LST	RCR	(s.p. 258)

Type	Ref. No.	Voltage AC $\mathrm{V}, 50 \mathrm{~Hz}$	Power consumption W	Control input LST V	Switching output	Switching current $\mathrm{V}(\lambda=0.8)$	Weight g
ILC	$\mathbf{1 8 6 2 3 3}$	$110-250$	<1.0	230	230	4	100

iPC - intelligent Pole Controller

This light controller was developed for installation in a luminaire pole and features the same functions (and in full scope) as the iLC Controller on page 265.

Technical Notes

Dimensions (LxWxH): $250 \times 60 \times 55 \mathrm{~mm}$
Control output: DALI or $1-10 \mathrm{~V}$ for max. 4 EBs , short-circuit-proof
Bistable relay output: closing contact
Control output ECO ballast: 10 mA for power reduction relays
Connection cable: 1 m (special configurations are available on request)
Storage temperature: -25 to $85^{\circ} \mathrm{C}$
Operating temperature: -25 to $80^{\circ} \mathrm{C}$
Humidity: non-condensing
Degree of protection: IP67, Protection class I

Galvanic Isolation

The electronic ballast does not feature potential isolation between input and output: as soon as the electronic ballast is connected to the controller, the control input of the electronic ballast is not potential-free.

Typical Applications

Lighting for public spaces
Lighting in the vicinity of buildings

DPC	MFF	ISD	DOO
BBT	LST	RCR	(s.p. 258)

Type	Suitable for	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & \text { V, } 50 \mathrm{~Hz} \end{aligned}$	Power consumption W	Control input LST V	Switching output* V	Switching current $A(\lambda=0.8)$	Weight g
iPC		186234	110-230	< 1.0	230	230	4	360
iPC-Lux	ilUX light sensors	186235	110-230	< 1.0	230	230	4	360
iPC-RC	ripple-control sound frequency**	186236	110-230	< 1.0	230	230	4	360
iPC-HFS	iHFS high frequency sensor	186357	110-230	< 1.0	230	230	4	360

* Optionally available with a second switching output on request
** Protocols on request

iDC - intelligent Data
 Concentrator

The iDC forms the master of the "Managed Night" light managment system and functions as the central connection interface to the software of the master system. The iDC can be programmed and also features application programs that are perfect for controlling lighting systems.

The following functions are an integral part of the product: timer programs, monitoring of limit values plus alarm function and alarm transmission, data conversion, data logging and email client.

Fitted with various interfaces such as SO for counter registration, the M bus for remote counter reading or the MOD bus for extended sensor and actuating functions, the iDC can adapt to suit almost any control task.

Technical Notes

Dimensions (BxHxT): $280 \times 230 \times 112 \mathrm{~mm}$
Material: aluminium AlSi 12 (Fe)
Drill holes for cables:
2 PG metric fittings $(25 \times 1.5 \mathrm{~mm})$
2 PG metric fittings $(32 \times 1.5 \mathrm{~mm})$
1 PG metric fittings $(20 \times 1.5 \mathrm{~mm})$
1 fixing hole for antenna connection
Interfaces for power-line carriers
Inputs: 2 digital inputs 30 V DC
Optionally extendable using a cut-off relay for
230 V AC: 2 impulse-counter inputs typ. of SO
Outputs: 2 relay outputs $230 \mathrm{~V} \mathrm{AC;} 10 \mathrm{~A}$
Ethernet Port 10/100BaseT, auto-selecting,
RS232 Interface for GSM/GPRS modem,
for up to 200 controllers
LON power line carrier communication:
Protocols: in acc. with ANSI CEA 709.1 / EN 14908-1 on the supply voltage (tri/single phase)
Transmission: in acc. with ANSI CEA 709.3 / EN 14908-3
IP communication: XML / SOAP, http, FTP, UDP
FME antenna connection: Male
Storage temperature: -25 to $85^{\circ} \mathrm{C}$
Operating temperature: -25 to $60^{\circ} \mathrm{C}$
Humidity: non-condensing
Degree of protection: IP65, Protection class I

The iDC also provides a very well documented, web-based XML/SOAP interface or an optionally available OPC driver (open process control) to the SCADA (Supervisory Control and Data Acquisition) system. This makes it possible to integrate the iDC also into any BA (Building Automation) or control system.

The iLIC software was specifically developed to enable control of the iDC. Various extension options are available to suit common communication requirements: GPRS...G3, IP (CAT5), Fibre optic (FO) Single Mode, Fibre optic (FO) Multi Mode, and optionally also WLAN on request.

iCT - intelligent

Configuration Software

- Specifically developed for commissioning an iDC
- Convenient and quick installation of all controllers in a network segment
- Quick commissioning thanks to clear identification of every controller with a barcode (scanner optional)
- The controller is configured in accordance with OLC-Lonmark ${ }^{\circledR}$ conventions

Type	Ref. No.	Voltage AC V, Hz	Average power consumption W	Transmission mode VA	Weight g
iDC-GPRS.3G	$\mathbf{1 8 6 2 3 0}$	$230 \pm 10 \%, 50 \pm 1 \%$	7	12	4400
iDC-IP	$\mathbf{1 8 6 2 3 7}$	$230 \pm 10 \%, 50 \pm 1 \%$	6.5	12	4400
iDC-FO-MM	$\mathbf{1 8 6 2 3 8}$	$230 \pm 10 \%, 50 \pm 1 \%$	7	12	4400
iDC-FO-SM	$\mathbf{1 8 6 2 3 9}$	$230 \pm 10 \%, 50 \pm 11 \%$	7	12	4400
iCT	$\mathbf{1 8 6 2 4 2}$	iDC commissioning software; the software can only be delivered along with the iDC and must be ordered separately.			
iLIC	$\mathbf{1 8 6 2 4 3}$	Software for visualizing; Operating system: independent (Linux derivate and Microsoff)			
iOPC	$\mathbf{1 8 6 . . .}$	Software for integration into the BA (Building Automation) (see page 270)			

iLUX - intelligent
 Lux Meter with Power Line Interface

The high-quality light sensor directly measures and delivers digital light metrics in lux to a light management system for the purpose of lighting control.

Lighting systems operated with or without a light management system can be switched on or off at a specific lux value via internal relays. The measured lux values can then be transmitted to the lighting system via the power line. Depending on the respective lighting level required in each case, it is therefore possible to independently control luminaires in different areas, e.g. at major and minor roads, pedestrian crossings and in parks.

The compact sensor can be fixed to the luminaire pole or a wall using the enclosed mounting bracket.

Technical Notes

Dimensions (LxW×H): $165 \times 165 \times 104 \mathrm{~mm}$
Sensor casing: aluminium with a PC cover,
sensor unit protected by opal glass
Connection cable to the controller: 10 m (special configurations available on request)
Storage temperature: -25 to $85^{\circ} \mathrm{C}$
Operating temperature: -25 to $80^{\circ} \mathrm{C}$
Humidity: non-condensing
Degree of protection: IP65
Weight of mounting bracket: 300 g
Casing and connection details of the iPC controller
(intended for installation in luminaire poles),
see page 208

Typical Applications

Lighting for public spaces
Lighting in the vicinity of buildings

Type	Ref. No.	Note	Weight g
iLUX	$\mathbf{1 8 6 2 3 1}$	Use only in combination with iPC-LUX (Ref. No.: 186235)	1000

iPL-NI Powerline Network Interface

For subsequent iLUX configuration without network operation
Data communication: notebook / PC and ilUX using a 230 V AC power supply cable Operating system: XP and higher
For parameter configuration and firmware updates
Ref. No.: 186265

iCCU - intelligent, Capacitive Coupling
 Unit

Intelligent, capacitive coupling unit for powerline communication.
Powerline signals are transferred using the B / C frequency range in acc. with Cenelec specifications. The unit is suitable for direct installation without requiring configuration and is transparent for data transfer purposes. The unit draws no power when operated in standby mode.
No software-based configuration required
Connection with an NH fuse possible on request

Technical notes

Casing: PC
Dimensions (LxWxH): $180 \times 94 \times 60 \mathrm{~mm}$
Mains voltage: $230 \mathrm{~V} \mathrm{AC} \pm 10 \%, 50 \mathrm{~Hz}$
Power consumption: 0.0 W
Leads: High-voltage silicone cable,
stranded conductors $1 \mathrm{~mm}^{2}$, length: 80 mm Storage temperature: -25 to $85^{\circ} \mathrm{C}$
Operating temperature: -25 to $65^{\circ} \mathrm{C}$
Degree of protection: IP65, Protection class I
Weight: 770 g
Resistance against surge voltage: 3 kV
Ref. No.: 186345

iBRIDGE - intelligent Wireless Bridge

For wireless signal transfer

iBRIDGE enables wireless transfer of control signals of the power-line network to adjacent lighting circuits without requiring a cable connection.

This makes it possible to jointly control several smaller, independent circuits within a larger lighting network and serves to reduce the number of required iDCs (data concentrators) since a larger number of controllers can be configured using a single iDC.

Sections of the lighting cable that are not suitable for power-line communication due to severe local interference can also be bridged using iBRIDGE.

Just like a controller, iBRIDGE is commissioned using the light management system and does not require any special software installation.

Typical applications

Lighting for public spaces, street lighting
Lighting in the vicinity of buildings
Company premises, warehouses, sports facilities

Technical Notes

Dimensions ($\varnothing \times H$): $105 \times 120 \mathrm{~mm}$
Mains voltage: $120-277 \mathrm{VAC} \pm 10 \%$
Mains frequency: $50-60 \mathrm{~Hz}$
Wireless frequency: 2.4 GHz
Power line communication frequency: Dual $115 \mathrm{~kb} / \mathrm{s}$ and $132 \mathrm{~kb} / \mathrm{s}$
Wireless output: 10 mW
Operating temperature: -40 to $85^{\circ} \mathrm{C}$
Humidity during the operation: non-condensing
Connection: in acc. with NEMA Socket Standard BS5972
Degree of protection: IP66
Weight: 190 g
Ref. No.: 186275

iLIC - intelligent Luminaire Information Centre

For outdoor luminaire control

The luminaire information centre is the central control instrument of a light management system. All connect ed luminaires can be controlled, monitored and displayed using a web-based server application

The server-based software supports both Windows and Linux operating systems. Firefox or Internet Explorer are the frontend applications to operate, control or display the light management system. The following actions can be controlled via the software:

- Switching individual luminaires on or off ahead of defined luminaire groups
- Defining the most diverse timer settings
- Evaluation and display of the lighting system status depending on various types of error message
- Evaluation of energy consumption at individual luminaire and luminaire-group level
- Graphic display of all acquired data over time |voltage, current, power, temperature, power factor, lighting hours, ...)

Ref. No.: 186243

Based on the software design, the lighting system displays information as a tree-like structure showing city, suburb, street, luminaire or can be broken down according to other criteria. The multi-client software also makes it possible to restrict rights and functions for different people or groups of people depending on their level of authorisation.

As the software is a wholly web-based application, system maintenance can be carried out via the web (global) or can be restricted to just the company using its LAN network, all depending on the system structure. Numerous users can access the system at the same time. Optional interfaces are also available to connect to other asset management systems.

System requirements

- Server: state-of-the-art
- Memory RAM: 4GB

Memory HD: 2TB

- CPU: min. Dual Core, depending on the scope of the project
- Operating system: XP, Windows 7, Linux, Distribution, VM operation is possible
- Data security: min. RAID 1 recommended RAID 5

iOPC - intelligent OPC DA Server

iOPC DA Sever for connecting iDCs to typical control technology systems

The iOPC Server is used to integrate iDCs into standardised SCADA/control technology systems. The software runs on Microsoff ${ }^{\circledR}$ operating systems and provides a standard interface for integrating data points.
OPC DA specification: DA 2.05
Type: iOPC 1.001 Tool
Ref. No.: 186358
for max. 3 iDC
Ref. No.: 186359 for max. 10 iDC
Ref. No.: 186385 for max. 20 iDC

Lighting Control System for Outdoor Applications - Accessories

iHFS - intelligent High-Frequency

Sensor

Motion sensor for street lighting

The iHFS enables energy-efficient and need-driven control of street lighting and lighting in the vicinity of buildings using intelligent high-frequency-based object detection. The sensor system functions reliably at all times irrespective of light and weather conditions.

The iHFS is available as a modular and an integrated system. With the modular version, up to 3 sensor modules can be attached to the luminaire pole, which enables simultaneous detection of objects from different directions. The detection field can be individually defined via the sensor's mounting angle.

With the integrated version, one sensor is typically mounted per luminaire. The sensor is installed directly in the luminaire.

iHFS

Installation

The sensors are attached to the luminaire pole using stainless steel tension bands (included in the scope of delivery). The direction of a sensor's detection field can be individually adjusted via the swivel-head holder.

Technical Notes

For Light Controller iPC-HFS (s. p. 266)
Dimensions (LxW×H): $83 \times 75 \times 67 \mathrm{~mm}$ plus holder
Operating temperature: -20 to $70^{\circ} \mathrm{C}$
HF technology: 5.8 GHz
Cable length: 10 m

Type	Note	Ref. No.	Power consumption W	Reach	Opening angle
HHFS-120 1	Sensor	$\mathbf{1 8 6 2 5 3}$	$0.7-1.5(1-3$ sensors	up to 22 m	120°

Sensor for built-in into luminaires on request.

Detection area

iSCT - intelligent
 Software
 Configurations Tool

The Managed Night power-line system as well as the two Smart and Flex Night systems can be controlled using the extremely robust tablet PC made by Panasonic and the associated software.

Panasonic toughpad FZ-G 1

for software configuration

- Full-ruggedized Windows 8 Tablet
- Intel® Core $^{\text {TM }}$ i5-3437U vPro processor
- Windows 8 Pro, Intel HD 4000 Graphic
- Daylight-readable 10,1" WUXGA outdoor display with IPSa technology (1920 $\times 1200$) with up to $800 \mathrm{~cd} / \mathrm{m}^{2}$
- Capacitive 10 -point multi-touch screen and digitizer
- Standard connections: USB 3.0, HDMI and headphones
- Pre-configurable port (serial, LAN, microSD or USB 2.0)
- Up to 8 hours of battery life; battery can be changed by user
- Protected against water and dust
- Will survive being dropped from a height of up to 120 cm without suffering damage (as tested by Panasonic)
- With preinstalled and configured light management software
Dimensions: $270 \times 188 \times 9 \mathrm{~mm}$, Weight: approx. 1.1 kg
Ref. No.: 186251
\qquad

Subsidiaries	Address	Phone / Fax / Email
Vossloh-Schwabe Deutschland GmbH	P.O. Box 2869	Phone: +49/(0)2351/10 10
Germany, Benelux, CIS, Georgia, Great Britain, Ireland,	D-58478 Lüdenscheid, Germany	Fax: +49/(0)2351/10 1217
Austria, Switzerland, Scandinavia, Turkey		info.vsv@vsv.vossloh-schwabe.com
Australia	Branch Office Sydney	Phone: +61/(0)2/88 430700
Vossloh-Schwabe Deutschland GmbH	3A Lenton Place	Fax: +61/(0)2/88 430777
	North Rocks, N.S.W. 2151, Australia	sales-aus@vsaus.vossloh-schwabe.com
China	Wiselogic International Center	Phone: +86/21/62 185599
Vossloh-Schwabe Electrical Appliances	Room 2603, \#66 North Shannxi Road	Fax: +86/21/62 670781
Trading (Shanghai) Co., Ltd.	Shanghai, P.C. 200041 /China	linda.li@vshk.vossloh-schwabe.com
Czech Republic, Slovakia	Sales Office East Europe	Phone: +420/235 300358
Vossloh-Schwabe Deutschland GmbH	Na Radosti 184	Fax: +420/235 312261
	15521 Prague 5-Zlicín, Czech Republic	magdalena.ragaverova@vsv.vossloh-schwabe.com
France	Branch Office France	Phone: +33/(0)389/20 1212
Vossloh-Schwabe Deutschland GmbH	10 Rue Denis Papin CS50101	Fax: +33/(0)389/24 1865
	68025 Colmar, France	vsf.ventes@vsf.vossloh-schwabe.com
Hong Kong	Flat A \& B, 26/F., West Gate Tower	Phone: +852/28779688
Vossloh-Schwabe Hong Kong Ltd.	7 Wing Hong Street, Cheung Sha Wan	Fax: +852/28779933
	Kowloon, Hong Kong	linda.li@vshk.vossloh-schwabe.com
Italy	Via Strada S. Martino 15	Phone: +39/0547/981 11
Vossloh-Schwabe Italia S.p.A.	47027 Sarsina/Forli-Cesena, Italy	Fax: +39/0547/98260
		vs-i@vsi.vossloh-schwabe.com
Korea	\#605 Cosmo Tower Building	Phone: +82/2/34 8466 11/16
Vossloh-Schwabe Korea	416 Youngdongdae-ro, Gangnam-gu	Fax: +82/2/34 846617
	Seoul 135-549, Korea	i.f.maeng@vs.vossloh-schwabe.com
New Zealand	Branch Office Auckland	Phone: +64/(0)9/265 1110
Vossloh-Schwabe Deutschland GmbH	P.O. Box 58809	Fax: +64/(0)9/265 1120
	2163 Botany, Manukau / New Zealand	sales-nz@vsnz.vossloh-schwabe.com
Poland, Baltic States	Sales Office Poland	Phone: +48/(0) 12/3 572323
Vossloh-Schwabe Deutschland GmbH	ul. Zaporoska 6/5	Fax: +48/(0) 12/2 620326
	PL 30-389 Kraków, Poland	lukasz.niemczycki@vsv.vossloh-schwabe.com
Serbia, Albania, Bosnia-Herzegovina, Bulgaria, Croatia,	Sales Office Belgrad/Serbia	Phone: $+381 / 63 / 286330$
Greece, Kosovo, Macedonia, Montenegro, Slovenia, Cyprus	Danila Lekica 1	Fax: $+381 / 63 / 286330$
Vossloh-Schwabe Deutschland GmbH	11000 Belgrade, Serbia	goran.stankovic@vsv.vossloh-schwabe.com
Singapore	Vertex, 33 Ubi Avenue 3	Phone: +65/62 757533
Vossloh-Schwabe Pte. Ltd.	Lobby A \#06-72	Fax: +65/62 757633
	Singapore 408868	vssing@singnet.com.sg
South Africa	Branch Office Johannesburg	Phone: +27/11/3144340
Vossloh-Schwabe Deutschland GmbH	154, Lechwe Avenue, Corporate Park	Fax: +27/11/3145287
	Midrand 1685, South Africa	barry.hall@vsaf.vossloh-schwabe.com
Spain, South America, Portugal	Venezuela 105, 5° - A	Phone: +34/93/48170 70
Vossloh-Schwabe Ibérica, S.L.	08019 Barcelona, Spain	Fax: +34/93/4817071
		vs-e@vse.vossloh-schwabe.com
Taiwan	Taiwan Branch	Phone: +886/(0)2/25 683622
Vossloh-Schwabe Pte. Ltd.	9. Fl-2, No. 80	Fax: +886/(0)2/25 683620
	Sung Chiang Road, Taipei, Taiwan	betty.ho@vstw.vossloh-schwabe.com
Thailand	3rd Floor (Unit 1) BUI Building 1	Phone: +66/(0)2/63 47311
Vossloh-Schwabe Trading Ltd.	175-177 Soi Anumarnratchathon 1	Fax: +66/(0)2/63 47313
	Surawong Road, Kwaeng Suriyawongse	sales.vstt@vstt.vossloh-schwabe.com
	Khet Bangrak, Bangkok 10500, Thailand	
Tunisia	Rue de l'énergie, BP. 299	Phone: +216/71/384900
Vossloh-Schwabe Tunisie S.A.	Zone Industrielle de Ben Arous 2013	Fax: +216/71/384990
	Tunis, Tunisia	hatem.benyahmed@vstu.com.tn
USA, Canada, Mexico	26 Century Blvd.	Phone: $+1 / 615 / 316-5100$
Universal™ Lighting Technologies	Nashville, TN 37214-3683, USA	Fax: + 1/615/316-5205
		oem_sales@unvlt.com

Distributors	Address	Phone / Fax / Email
Belarus	5-907A, Nekrasova str.	Phone: +375 (17) 2390999
OOO 'Avilyuks'	BY 220040 Minsk, Belarus	alecsey@lux.by
Belgium	Golden Hope Straat 35b	Phone: +32/2/344 3434
Huppertz NV-SA	1620 Drogenbos, Belgium	Fax: +32/2/344 3430
		info@huppertz.be
Bulgaria	Vasil Levski Street, No 20	Phone: +359/(0)618/64909
HIT Ltd.	5139 Parvomaitsi, Bulgaria	Fax: +359/(0)618/64929
		m.zelenkov@hitlighting.com
Denmark	Syv Holmevej 3	Phone: $+45 / 4618 / 6644$
Ingemann Components A/S	4130 Viby Sj., Denmark	Fax: +45/4618/67 12
		sales@scanlouvers.dk
Egypt	55, Al Gomhoria St.	Phone: +202/2/58 80022
Egyptian German Electrical Supplies Comp.	Azbakia, Cairo, Egypt	Fax: +202/2/59 14188
Germany	An der Wachsfabrik 3a	Phone: +49/(0)2236/966 310
Arnold Houben GmbH	50996 Cologne, Germany	Fax: +49/(0)2236/966 319
Distributor für den Elektro-Großhandel		info@houben.eu
Finland	Timmermalmintie 21 A	Phone: +358(0)98553210
Artisan Rinaldo AB Ltd.	01680 Vantaa, Finland	Fax: +358(0)98533183
		rinaldo@artisan-rinaldo.fi
Iran	141 Amol Road	Phone: +98/111/328 3911
Sepehr Afrooz Saba Trading, Inc.	Babol, Iran	Fax: +98/111/3283924
		info@sasti.net
Jordan	Salah Ad-deen Str. 164, 182	Phone: +962/6/46 46666
Hassan Minwer Est.	P.O. Box 182651	Fax: +962/6/46 43746
Jabal Al-Hussein	11118 Amman, Jordan	minwerlight@index.com.jo
Netherlands	Amperestraat 24-28	Phone: +31/(0)384698200
Hemmink BV	8013 PV Zwolle	Fax: +31/(0)384698299
	Netherlands	info@hemmink.nl
Norway	Sagmyra 2 A	Phone: +47/38/003636
Lyskomponenter AS	4624 KristiansandBal, Norway	Fax: +47/23/501283
		firmapost@lyskomponenter.no
Portugal	Empreendimento Urbiportral, Armazém 3	Phone: +351/21/9151175
Vabeldi-Comercio de lluminação, Lda.	Zona Industrial da Abrunheira	Fax: + 351/21/9152063
	2710-089 Sintra, Portugal	vabeldi@vabeldi.pt
Romania	Budila str., 12, ap. 4B4, Sector 2	Mobile: +40/744278096
Patrascoiu Consulting SRL	024095 Bucharest, Romania	Phone/Fax: +40/21/6107437
		silviu.patrascoiu@patrascoiu-consulting.ro
Russia	87, Dmitrovskoje schosse	Phone: +7 (0)495/7750100
JSC 'LAINER'	127238 Moscow, Russia	sekretar.info@zaolainer.ru
OOO Svetotekhnika	195 Moskovskii prospekt	Phone: +7-4012777999
Kaliningrad Region	236001 Kaliningrad, Russia	office@st39.ru
OOO 'Market Union'	10/6, Dokukina str.	Phone: +7-495-921-1222
LED Products	129226 Moscow, Russia	info@lamps.ru
Saudi Arabia	P.O. Box 42005	Phone: +966/1/29 17855
Ulira Light	11541 Riyadh, Saudi Arabia	Fax: +966/1/29 13597
		ultralight@ultra-light.net
Sweden	Almedalsvägen 147	Phone: +46/(0)31/70 60070
Candelux AB	SE 43962 Frillesås, Sweden	Fax: +46/(0)31/70 60072
		info@candelux.se
Switzerland, Liechtenstein	Weidstrasse 16	Phone: +41/71/42 42525
Max Hauri AG	9220 Bischofszell, Switzerland	Fax: +41/71/42 42590
		verkauf@maxhauri.ch
Ukraine	BZ 'Afina'	Phone: +380482375122
PP Elektrosila COM	3/4, Grecheskaya Pl., off. 534	el-power-kiev@voliacable.com
	UA 65026 Odessa, Ukraine	
United Arab Emirates	P.O. Box 17590	Phone: +971/4/88 12599
Vs-Gulf fzCO	Jebel Ali Free Zone, Dubai, U.A.E.	Fax: +971/4/88 12170
		sales@vsgulf.com

[^0]: Photos: Giordano, Serpong, Jakarta, Indonesia

[^1]: Emission data at $t_{p}=65^{\circ} \mathrm{C} \mid *$ Colour tolerance: 3 MacAdam | ** Production tolerance of luminous flux and efficiency: $\pm 15 \% \mid \mathrm{Min}$. CRI Ra: > $80 />90$

[^2]: Emission data at $t_{p}=\left.65^{\circ} \mathrm{C}\right|^{*}$ Colour tolerance: 3 MacAdam | ** Production tolerance of luminous flux, efficiency, voltage and power consumption: $\pm 10 \%$

[^3]: Emission data at $t_{p}=\left.50^{\circ} \mathrm{C}\right|^{*}$ Measurement tolerance: $\pm 7 \%$ | 2000 K and 2400 K on request

[^4]: ** Products under development; preliminary technical datas
 Emission data at $t_{p}=50^{\circ} \mathrm{C} \mid{ }^{*}$ Measuring tolerance of luminous flux: $\pm 7 \%$

[^5]: ** Products under development; preliminary technical datas
 Emission data at $t_{p}=50^{\circ} \mathrm{C} \mid$ * Measuring tolerance of luminous flux: $\pm 7 \%$

[^6]: * Measurement tolerance of luminous flux: $\pm 7 \%$

[^7]: * Production tolerance of luminous flux, efficiency, voltage and power consumption: $\pm 10 \%$

[^8]: * Measurement tolerance of luminous flux: $\pm 7 \%$

[^9]: Emission data at $t_{p}=50^{\circ} \mathrm{C} \mid$ Products under development; preliminary technical datas | * Measurement tolerance of luminous flux: $\pm 7 \%$

[^10]: Emission data at $t_{p}=\left.65^{\circ} \mathrm{C}\right|^{*}$ Colour tolerance: $3 \mathrm{MacAdam} \mid$ ** Production tolerance of luminous flux, efficiency, voltage and power consumption: $\pm 10 \%$ Min. CRI Ra: > 80 (70)

[^11]: Emission data at $t_{p}=65^{\circ} \mathrm{C} \mid$ * Colour tolerance: $3 \mathrm{MacAdam} \mid$ ** Production tolerance of luminous flux, efficiency, voltage and power consumption: $\pm 10 \%$ Min. CRI Ra: > 90

[^12]: Emission data at $t_{p}=65^{\circ} \mathrm{C} \mid$ * Colour tolerance: 3 MacAdam | ** Production tolerance of luminous flux, efficiency, voltage and power consumption: $\pm 10 \%$

[^13]: Emission data at $t_{p}=65^{\circ} \mathrm{C} \mid$ * Colour tolerance: 3 MacAdam | ** Production tolerance of luminous flux and efficiency: $\pm 15 \%$; of voltage and power consumption: $\pm 10 \%$ Min. CRI R_{a} : > 90

[^14]: * The values mentioned above represent only statistical variables on account of the complex manufacturing process of light emitting diodes

 The values do not necessarily correspond exactly to the actual parameters of every single product which can vary from the typical specification.
 ** Production tolerance of voltage and power consumption: $\pm 10 \%$; Measuring tolerance of luminous flux: $\pm 7 \%$
 *** $\mathrm{CRI}>80$ on request

[^15]: * The values mentioned above represent only statistical variables on account of the complex manufacturing process of light emitting diodes

 The values do not necessarily correspond exactly to the actual parameters of every single product which can vary from the typical specification.
 ** Production tolerance of voltage and power consumption: $\pm 10 \%$; Measuring tolerance of luminous flux: $\pm 7 \%$
 *** CRI > 80 on request

[^16]: Emission data at $t_{p}=65^{\circ} \mathrm{C} \mid$ * Measuring tolerance of luminous flux: $\pm 7 \% \mid$ **Production tolerance of voltage and power consumption: $+15 /-19 \%$ at 400 mA and
 $+12 /-10 \%$ at 700 mA | Suitable thermal tapes for these LED modules see page 91 .

[^17]: * The values mentioned above represent only statistical variables on account of the complex manufacturing process of light emitting diodes

 The values do not necessarily correspond exactly to the actual parameters of every single product which can vary from the typical specification.
 ** Production tolerance of voltage and power consumption: $\pm 10 \%$; Measuring tolerance of luminous flux: $\pm 7 \%$
 *** CRI > 80 on request

[^18]: * The values mentioned above represent only statistical variables on account of the complex manufacturing process of light emitting diodes

 The values do not necessarily correspond exactly to the actual parameters of every single product which can vary from the typical specification.
 ** Production tolerance of voltage and power consumption: $\pm 10 \%$ | Measuring tolerance of luminous flux: $\pm 7 \%$
 *** CRI > 80 on request

[^19]: Emission data at $t_{p}=65^{\circ} \mathrm{C} \mid$ * Measuring tolerance of luminous flux: $\pm 7 \% \mid$ **Production tolerance of voltage and power consumption: $+15 /-19 \%$ at 400 mA and
 $+12 /-10 \%$ at 700 mA | Suitable thermal tapes for these LED modules see page 91.

[^20]: Emission data at $t_{\mathrm{i}}=25^{\circ} \mathrm{C}$ | * Production tolerance of luminous flux: $\pm 7 \%$ | Suitable thermal tapes for these LED modules see page 90 .

[^21]: * The values mentioned above represent only statistical variables on account of the complex manufacturing process of light emitting diodes

 The values do not necessarily correspond exactly to the actual parameters of every single product which can vary from the typical specification.

[^22]: * The values mentioned above represent only statistical variables on account of the complex manufacturing process of light emitting diodes

 The values do not necessarily correspond exactly to the actual parameters of every single product which can vary from the typical specification.

[^23]: This technical information for $3 \mathrm{M}^{\text {TM }}$ Thermally Conductive Adhesive Transfer Tape 8810 or Bergquist Bond-Ply ${ }^{\circledR} 100$ should be
 considered representative or typical only and should not be used for specification purposes.

[^24]: * Average value (not for specification purpose) | ** For use in luminaires of protection class I (has to be tested in luminaire)

[^25]: * Production tolerance of luminous flux and efficiency: ± 15 \%

[^26]: * Average value (not for specification purpose) | ** For use in luminaires of protection class I (has to be tested in luminaire)

[^27]: * Average value (not for specification purpose) | ** For use in luminaires of protection class I (has to be tested in luminaire)

[^28]: * Average value (not for specification purpose) | ** For use in luminaires of protection class I (has to be tested in luminaire)

[^29]: * Average value (not for specification purpose) | ** For use in luminaires of protection class I (has to be tested in luminaire)

[^30]: * Average value (not for specification purpose) | ** For use in luminaires of protection class I (has to be tested in luminaire)

[^31]: * Average value (not for specification purpose) | ** For use in luminaires of protection class I (has to be tested in luminaire)

[^32]: Test standards: IEC/EN 60598-1, IEC/EN 60598-2-2, IEC/EN 62031, IEC/EN 62471, IEC/EN 55015, IEC/EN 61000-3-2, IEC/EN 61000-3-3, IEC/EN 61547

[^33]: You will find LED drivers for the DecoLED modules
 on pages 138-182.

[^34]: * Production tolerance of luminous flux, voltage and power consumption: $\pm 10 \%$

[^35]: * Production tolerance of luminous flux, voltage and power consumption: $\pm 10 \%$

[^36]: * Production tolerance of luminous flux, voltage and power consumption: $\pm 10 \%$

[^37]: * Production tolerance of luminous flux, voltage and power consumption: $\pm 10 \%$

[^38]: * Production tolerance of luminous flux, voltage and power consumption: $\pm 15 \%$

[^39]: * Production tolerance of luminous flux, voltage and power consumption: $\pm 15 \%$

[^40]: Emission data at $t_{i}=85^{\circ} \mathrm{C} \mid$ * Production tolerance of luminous flux, voltage and power consumption: $\pm 7 \%$

[^41]: Power reduction can be effected with VS Power Switches PR 12 K LC and PR 12 K D.
 These power switches are used to switch the 230-V power reduction input on the LED driver of a luminaire

[^42]: * Switching-time selectable: $3|3.5| 4|4.5| 5|5.5| 6$ hrs. at 50 Hz

[^43]: * The values mentioned above represent only statistical variables on account of the complex manufacturing process of light emitting diodes.

 The values do not necessarily correspond exactly to the actual parameters of every single product which can vary from the typical specification.

[^44]: * The values mentioned above represent only statistical variables on account of the complex manufacturing process of light emitting diodes.

 The values do not necessarily correspond exactly to the actual parameters of every single product which can vary from the typical specification.

[^45]: Note: Further colours for AluLED are available on request

[^46]: Note: Further colours for AluLED are available upon request

